Description
Book SynopsisNeuroendocrinology with its well defined functions, inputs, and outputs, is one of the most fertile grounds for computational modeling in neuroscience. But modeling is often seen as something of a dark art.
Table of ContentsList of Contributors, vii
Series Preface, ix
Preface, xi
About the Companion Website, xv
1 Bridging Between Experiments and Equations: A Tutorial on Modeling Excitability, 1
David P. McCobb and Mary Lou Zeeman
2 Ion Channels and Electrical Activity in Pituitary Cells: A Modeling Perspective, 80
Richard Bertram, Joël Tabak, and Stanko S. Stojilkovic
3 Endoplasmic Reticulum- and Plasma-Membrane-Driven Calcium Oscillations, 111
Arthur Sherman
4 A Mathematical Model of Gonadotropin-Releasing Hormone Neurons, 142
James Sneyd, Wen Duan, and Allan Herbison
5 Modeling Spiking and Secretion in the Magnocellular Vasopressin Neuron, 166
Duncan J. MacGregor and Gareth Leng
6 Modeling Endocrine Cell Network Topology, 206
David J. Hodson, Francois Molino, and Patrice Mollard
7 Modeling the Milk-Ejection Reflex, 227
Gareth Leng and Jianfeng Feng
8 Dynamics of the HPA Axis: A Systems Modeling Approach, 252
John R. Terry, Jamie J. Walker, Francesca Spiga, and Stafford L. Lightman
9 Modeling the Dynamics of Gonadotropin-Releasing Hormone (GnRH) Secretion in the Course of an Ovarian Cycle, 284
Frédérique Clément and Alexandre Vidal
Glossary, 305
Index, 315