Description

Book Synopsis
Change Detection and Image Time Series Analysis 1 presents a wide range of unsupervised methods for temporal evolution analysis through the use of image time series associated with optical and/or synthetic aperture radar acquisition modalities.

Chapter 1 introduces two unsupervised approaches to multiple-change detection in bi-temporal multivariate images, with Chapters 2 and 3 addressing change detection in image time series in the context of the statistical analysis of covariance matrices. Chapter 4 focuses on wavelets and convolutional-neural filters for feature extraction and entropy-based anomaly detection, and Chapter 5 deals with a number of metrics such as cross correlation ratios and the Hausdorff distance for variational analysis of the state of snow. Chapter 6 presents a fractional dynamic stochastic field model for spatio temporal forecasting and for monitoring fast-moving meteorological events such as cyclones. Chapter 7 proposes an analysis based on characteristic points for texture modeling, in the context of graph theory, and Chapter 8 focuses on detecting new land cover types by classification-based change detection or feature/pixel based change detection. Chapter 9 focuses on the modeling of classes in the difference image and derives a multiclass model for this difference image in the context of change vector analysis.

Table of Contents

Contents

Preface xi

Abdourrahmane M. ATTO, Francesca BOVOLO and Lorenzo BRUZZONE

List of Notations

Chapter 1 Unsupervised Change Detection in Multitemporal Remote Sensing Images 1

Sicong LIU, Francesca BOVOLO, Lorenzo BRUZZONE, QianDU

and Xiaohua TONG

1.1. Introduction 1

1.2. Unsupervised change detection in multispectral images 3

1.2.1.Relatedconcepts 3

1.2.2.Openissuesandchallenges 7

1.2.3. Spectral–spatial unsupervised CD techniques 7

1.3 Unsupervised multiclass change detection approaches based on modelingspectral–spatialinformation 9

1.3.1 Sequential spectral change vector analysis (S 2 CVA) 9

1.3.2. Multiscale morphological compressed change vector analysis 11

1.3.3. Superpixel-level compressed change vector analysis 15

1.4.Datasetdescriptionandexperimentalsetup 18

1.4.1.Datasetdescription 18

1.4.2.Experimentalsetup 22

1.5.Resultsanddiscussion 24

1.5.1.ResultsontheXuzhoudataset 24

1.5.2. Results on the Indonesia tsunami dataset 24

xv

1.6.Conclusion 28

1.7.Acknowledgements 29

1.8.References 29

Chapter 2 Change Detection in Time Series of Polarimetric SAR Images 35

Knut CONRADSEN, Henning SKRIVER, MortonJ.CANTY

andAllanA.NIELSEN

2.1. Introduction 35

2.1.1.Theproblem 36

2.1.2 Important concepts illustrated by means of the gamma distribution 39

2.2.Testtheoryandmatrixordering 45

2.2.1. Test for equality of two complex Wishart distributions 45

2.2.2. Test for equality of k-complex Wishart distributions 47

2.2.3. The block diagonal case 49

2.2.4.TheLoewnerorder 52

2.3.Thebasicchangedetectionalgorithm 53

2.4.Applications 55

2.4.1.Visualizingchanges 58

2.4.2.Fieldwisechangedetection 59

2.4.3. Directional changes using the Loewner ordering 62

2.4.4. Software availability 65

2.5.References 70

Chapter 3 An Overview of Covariance-based Change Detection Methodologies in Multivariate SAR Image Time Series 73

Ammar MIAN, Guillaume GINOLHAC, Jean-Philippe OVARLEZ,

Arnaud BRELOY and Frédéric PASCAL

3.1. Introduction 73

3.2.Datasetdescription 76

3.3.StatisticalmodelingofSARimages 77

3.3.1.Thedata 77

3.3.2.Gaussianmodel 77

3.3.3.Non-Gaussianmodeling 83

3.4.Dissimilaritymeasures 84

3.4.1.Problemformulation 84

3.4.2. Hypothesis testing statistics 85

3.4.3.Information-theoreticmeasures 87

3.4.4.Riemanniangeometrydistances 89

3.4.5.Optimaltransport 90

3.4.6.Summary 91

3.4.7. Results of change detectors on the UAVSAR dataset 91

3.5. Change detection based on structured covariances 94

3.5.1. Low-rank Gaussian change detector 96

3.5.2. Low-rank compound Gaussian change detector 97

3.5.3. Results of low-rank change detectors on the UAVSAR dataset 100

3.6.Conclusion 102

3.7.References 103

Chapter 4 Unsupervised Functional Information Clustering in Extreme Environments from Filter Banks and Relative Entropy 109

Abdourrahmane M. ATTO, Fatima KARBOU, Sophie GIFFARD-ROISIN

and Lionel BOMBRUN

4.1. Introduction 109

4.2.Parametricmodelingofconvnetfeatures 110

4.3.Anomalydetectioninimagetimeseries 113

4.4.Functionalimagetimeseriesclustering 119

4.5.Conclusion 123

4.6.References 123

Chapter 5 Thresholds and Distances to Better Detect Wet Snow over Mountains with Sentinel-1 Image Time Series 127

Fatima KARBOU, Guillaume JAMES, Philippe DURAND

and Abdourrahmane M. ATTO

5.1. Introduction 127

5.2.Testareaanddata 129

5.3.WetsnowdetectionusingSentinel-1 129

5.4.Metricstodetectwetsnow 133

5.5.Discussion 138

5.6.Conclusion 143

5.7.Acknowledgements 143

5.8.References 143

Chapter 6 Fractional Field Image Time Series Modeling and Application to Cyclone Tracking 145

Abdourrahmane M. ATTO, Aluísio PINHEIRO, Guillaume GINOLHAC

and Pedro MORETTIN

6.1. Introduction 145

6.2. Random field model of a cyclone texture 148

6.2.1.Cyclonetexturefeature 149

6.2.2. Wavelet-based power spectral densities and cyclone fields 150

6.2.3. Fractional spectral power decay model 153

6.3.Cyclonefieldeyedetectionandtracking 157

6.3.1.Cycloneeyedetection 157

6.3.2.Dynamicfractalfieldeyetracking 158

6.4. Cyclone field intensity evolution prediction 159

6.5.Discussion 161

6.6.Acknowledgements 163

6.7.References 163

Chapter 7 Graph of Characteristic Points for Texture Tracking: Application to Change Detection and Glacier Flow Measurement from SAR Images 167

Minh-Tan PHAM and Grégoire MERCIER

7.1. Introduction 167

7.2. Texture representation and characterization using local extrema 169

7.2.1.Motivationandapproach 169

7.2.2. Local extrema keypoints within SAR images 172

7.3.Unsupervisedchangedetection 175

7.3.1. Proposed framework 175

7.3.2. Weighted graph construction from keypoints 176

7.3.3.Changemeasure(CM)generation 178

7.4.Experimentalstudy 179

7.4.1. Data description and evaluation criteria 179

7.4.2.Changedetectionresults 181

7.4.3.Sensitivitytoparameters 185

7.4.4.ComparisonwiththeNLMmodel 188

7.4.5. Analysis of the algorithm complexity 191

7.5.Applicationtoglacierflowmeasurement 192

7.5.1. Proposed method 193

7.5.2.Results 194

7.6.Conclusion 196

7.7.References 197

Chapter 8 Multitemporal Analysis of Sentinel-1/2 Images for Land Use Monitoring at Regional Scale 201

Andrea GARZELLI and Claudia ZOPPETTI

8.1. Introduction 201

8.2. Proposed method 203

8.2.1.Testsiteanddata 206

8.3.SARprocessing 209

8.4.Opticalprocessing 215

8.5.Combinationlayer 217

8.6.Results 219

8.7.Conclusion 220

8.8.References 221

Chapter 9 Statistical Difference Models for Change Detection in Multispectral Images 223

Massimo ZANETTI, Francesca BOVOLO and Lorenzo BRUZZONE

9.1. Introduction 223

9.2. Overview of the change detection problem 225

9.2.1. Change detection methods for multispectral images 227

9.2.2. Challenges addressed in this chapter 230

9.3 The Rayleigh–Rice mixture model for the magnitude of the differenceimage 231

9.3.1. Magnitude image statistical mixture model 231

9.3.2.Bayesiandecision 233

9.3.3. Numerical approach to parameter estimation 234

9.4. A compound multiclass statistical model of the difference image 239

9.4.1. Difference image statistical mixture model 240

9.4.2. Magnitude image statistical mixture model 245

9.4.3.Bayesiandecision 248

9.4.4. Numerical approach to parameter estimation 249

9.5.Experimentalresults 253

9.5.1.Datasetdescription 253

9.5.2.Experimentalsetup 256

9.5.3. Test 1: Two-class Rayleigh–Rice mixture model 256

9.5.4. Test 2: Multiclass Rician mixture model 260

9.6.Conclusion 266

9.7.References 267

List of Authors 275

Index 277

Summary of Volume 2 281

Change Detection and Image Time-Series Analysis

Product form

£124.15

Includes FREE delivery

RRP £137.95 – you save £13.80 (10%)

Order before 4pm today for delivery by Tue 20 Jan 2026.

A Hardback by Abdourrahmane M. Atto, Francesca Bovolo, Lorenzo Bruzzone

15 in stock


    View other formats and editions of Change Detection and Image Time-Series Analysis by Abdourrahmane M. Atto

    Publisher: ISTE Ltd
    Publication Date: 04/01/2022
    ISBN13: 9781789450569, 978-1789450569
    ISBN10: 178945056X

    Description

    Book Synopsis
    Change Detection and Image Time Series Analysis 1 presents a wide range of unsupervised methods for temporal evolution analysis through the use of image time series associated with optical and/or synthetic aperture radar acquisition modalities.

    Chapter 1 introduces two unsupervised approaches to multiple-change detection in bi-temporal multivariate images, with Chapters 2 and 3 addressing change detection in image time series in the context of the statistical analysis of covariance matrices. Chapter 4 focuses on wavelets and convolutional-neural filters for feature extraction and entropy-based anomaly detection, and Chapter 5 deals with a number of metrics such as cross correlation ratios and the Hausdorff distance for variational analysis of the state of snow. Chapter 6 presents a fractional dynamic stochastic field model for spatio temporal forecasting and for monitoring fast-moving meteorological events such as cyclones. Chapter 7 proposes an analysis based on characteristic points for texture modeling, in the context of graph theory, and Chapter 8 focuses on detecting new land cover types by classification-based change detection or feature/pixel based change detection. Chapter 9 focuses on the modeling of classes in the difference image and derives a multiclass model for this difference image in the context of change vector analysis.

    Table of Contents

    Contents

    Preface xi

    Abdourrahmane M. ATTO, Francesca BOVOLO and Lorenzo BRUZZONE

    List of Notations

    Chapter 1 Unsupervised Change Detection in Multitemporal Remote Sensing Images 1

    Sicong LIU, Francesca BOVOLO, Lorenzo BRUZZONE, QianDU

    and Xiaohua TONG

    1.1. Introduction 1

    1.2. Unsupervised change detection in multispectral images 3

    1.2.1.Relatedconcepts 3

    1.2.2.Openissuesandchallenges 7

    1.2.3. Spectral–spatial unsupervised CD techniques 7

    1.3 Unsupervised multiclass change detection approaches based on modelingspectral–spatialinformation 9

    1.3.1 Sequential spectral change vector analysis (S 2 CVA) 9

    1.3.2. Multiscale morphological compressed change vector analysis 11

    1.3.3. Superpixel-level compressed change vector analysis 15

    1.4.Datasetdescriptionandexperimentalsetup 18

    1.4.1.Datasetdescription 18

    1.4.2.Experimentalsetup 22

    1.5.Resultsanddiscussion 24

    1.5.1.ResultsontheXuzhoudataset 24

    1.5.2. Results on the Indonesia tsunami dataset 24

    xv

    1.6.Conclusion 28

    1.7.Acknowledgements 29

    1.8.References 29

    Chapter 2 Change Detection in Time Series of Polarimetric SAR Images 35

    Knut CONRADSEN, Henning SKRIVER, MortonJ.CANTY

    andAllanA.NIELSEN

    2.1. Introduction 35

    2.1.1.Theproblem 36

    2.1.2 Important concepts illustrated by means of the gamma distribution 39

    2.2.Testtheoryandmatrixordering 45

    2.2.1. Test for equality of two complex Wishart distributions 45

    2.2.2. Test for equality of k-complex Wishart distributions 47

    2.2.3. The block diagonal case 49

    2.2.4.TheLoewnerorder 52

    2.3.Thebasicchangedetectionalgorithm 53

    2.4.Applications 55

    2.4.1.Visualizingchanges 58

    2.4.2.Fieldwisechangedetection 59

    2.4.3. Directional changes using the Loewner ordering 62

    2.4.4. Software availability 65

    2.5.References 70

    Chapter 3 An Overview of Covariance-based Change Detection Methodologies in Multivariate SAR Image Time Series 73

    Ammar MIAN, Guillaume GINOLHAC, Jean-Philippe OVARLEZ,

    Arnaud BRELOY and Frédéric PASCAL

    3.1. Introduction 73

    3.2.Datasetdescription 76

    3.3.StatisticalmodelingofSARimages 77

    3.3.1.Thedata 77

    3.3.2.Gaussianmodel 77

    3.3.3.Non-Gaussianmodeling 83

    3.4.Dissimilaritymeasures 84

    3.4.1.Problemformulation 84

    3.4.2. Hypothesis testing statistics 85

    3.4.3.Information-theoreticmeasures 87

    3.4.4.Riemanniangeometrydistances 89

    3.4.5.Optimaltransport 90

    3.4.6.Summary 91

    3.4.7. Results of change detectors on the UAVSAR dataset 91

    3.5. Change detection based on structured covariances 94

    3.5.1. Low-rank Gaussian change detector 96

    3.5.2. Low-rank compound Gaussian change detector 97

    3.5.3. Results of low-rank change detectors on the UAVSAR dataset 100

    3.6.Conclusion 102

    3.7.References 103

    Chapter 4 Unsupervised Functional Information Clustering in Extreme Environments from Filter Banks and Relative Entropy 109

    Abdourrahmane M. ATTO, Fatima KARBOU, Sophie GIFFARD-ROISIN

    and Lionel BOMBRUN

    4.1. Introduction 109

    4.2.Parametricmodelingofconvnetfeatures 110

    4.3.Anomalydetectioninimagetimeseries 113

    4.4.Functionalimagetimeseriesclustering 119

    4.5.Conclusion 123

    4.6.References 123

    Chapter 5 Thresholds and Distances to Better Detect Wet Snow over Mountains with Sentinel-1 Image Time Series 127

    Fatima KARBOU, Guillaume JAMES, Philippe DURAND

    and Abdourrahmane M. ATTO

    5.1. Introduction 127

    5.2.Testareaanddata 129

    5.3.WetsnowdetectionusingSentinel-1 129

    5.4.Metricstodetectwetsnow 133

    5.5.Discussion 138

    5.6.Conclusion 143

    5.7.Acknowledgements 143

    5.8.References 143

    Chapter 6 Fractional Field Image Time Series Modeling and Application to Cyclone Tracking 145

    Abdourrahmane M. ATTO, Aluísio PINHEIRO, Guillaume GINOLHAC

    and Pedro MORETTIN

    6.1. Introduction 145

    6.2. Random field model of a cyclone texture 148

    6.2.1.Cyclonetexturefeature 149

    6.2.2. Wavelet-based power spectral densities and cyclone fields 150

    6.2.3. Fractional spectral power decay model 153

    6.3.Cyclonefieldeyedetectionandtracking 157

    6.3.1.Cycloneeyedetection 157

    6.3.2.Dynamicfractalfieldeyetracking 158

    6.4. Cyclone field intensity evolution prediction 159

    6.5.Discussion 161

    6.6.Acknowledgements 163

    6.7.References 163

    Chapter 7 Graph of Characteristic Points for Texture Tracking: Application to Change Detection and Glacier Flow Measurement from SAR Images 167

    Minh-Tan PHAM and Grégoire MERCIER

    7.1. Introduction 167

    7.2. Texture representation and characterization using local extrema 169

    7.2.1.Motivationandapproach 169

    7.2.2. Local extrema keypoints within SAR images 172

    7.3.Unsupervisedchangedetection 175

    7.3.1. Proposed framework 175

    7.3.2. Weighted graph construction from keypoints 176

    7.3.3.Changemeasure(CM)generation 178

    7.4.Experimentalstudy 179

    7.4.1. Data description and evaluation criteria 179

    7.4.2.Changedetectionresults 181

    7.4.3.Sensitivitytoparameters 185

    7.4.4.ComparisonwiththeNLMmodel 188

    7.4.5. Analysis of the algorithm complexity 191

    7.5.Applicationtoglacierflowmeasurement 192

    7.5.1. Proposed method 193

    7.5.2.Results 194

    7.6.Conclusion 196

    7.7.References 197

    Chapter 8 Multitemporal Analysis of Sentinel-1/2 Images for Land Use Monitoring at Regional Scale 201

    Andrea GARZELLI and Claudia ZOPPETTI

    8.1. Introduction 201

    8.2. Proposed method 203

    8.2.1.Testsiteanddata 206

    8.3.SARprocessing 209

    8.4.Opticalprocessing 215

    8.5.Combinationlayer 217

    8.6.Results 219

    8.7.Conclusion 220

    8.8.References 221

    Chapter 9 Statistical Difference Models for Change Detection in Multispectral Images 223

    Massimo ZANETTI, Francesca BOVOLO and Lorenzo BRUZZONE

    9.1. Introduction 223

    9.2. Overview of the change detection problem 225

    9.2.1. Change detection methods for multispectral images 227

    9.2.2. Challenges addressed in this chapter 230

    9.3 The Rayleigh–Rice mixture model for the magnitude of the differenceimage 231

    9.3.1. Magnitude image statistical mixture model 231

    9.3.2.Bayesiandecision 233

    9.3.3. Numerical approach to parameter estimation 234

    9.4. A compound multiclass statistical model of the difference image 239

    9.4.1. Difference image statistical mixture model 240

    9.4.2. Magnitude image statistical mixture model 245

    9.4.3.Bayesiandecision 248

    9.4.4. Numerical approach to parameter estimation 249

    9.5.Experimentalresults 253

    9.5.1.Datasetdescription 253

    9.5.2.Experimentalsetup 256

    9.5.3. Test 1: Two-class Rayleigh–Rice mixture model 256

    9.5.4. Test 2: Multiclass Rician mixture model 260

    9.6.Conclusion 266

    9.7.References 267

    List of Authors 275

    Index 277

    Summary of Volume 2 281

    Recently viewed products

    © 2026 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account