Description

Book Synopsis
1 Elementary Concepts.- 2 Reduction of Positive Definite Forms.- 3 Indefinite Forms.- 3.1 Reduction, Cycles.- 3.2 Automorphs, Pell's Equation.- 3.3 Continued Fractions and Indefinite Forms.- 4 The Class Group.- 4.1 Representation and Genera.- 4.2 Composition Algorithms.- 4.3 Generic Characters Revisited.- 4.4 Representation of Integers.- 5 Miscellaneous Facts.- 5.1 Class Number Computations.- 5.2 Extreme Cases and Asymptotic Results.- 6 Quadratic Number Fields.- 6.1 Basic Algebraic Definitions.- 6.2 Algebraic Numbers and Quadratic Fields.- 6.3 Ideals in Quadratic Fields.- 6.4 Binary Quadratic Forms and Classes of Ideals.- 6.5 History.- 7 Composition of Forms.- 7.1 Nonfundamental Discriminants.- 7.2 The General Problem of Composition.- 7.3 Composition in Different Orders.- 8 Miscellaneous Facts II.- 8.1 The Cohen-Lenstra Heuristics.- 8.2 Decomposing Class Groups.- 8.3 Specifying Subgroups of Class Groups.- 9 The 2-Sylow Subgroup.- 9.1 Classical Results on the Pell Equation.- 9.2 ModernR

Table of Contents
1 Elementary Concepts.- 2 Reduction of Positive Definite Forms.- 3 Indefinite Forms.- 3.1 Reduction, Cycles.- 3.2 Automorphs, Pell’s Equation.- 3.3 Continued Fractions and Indefinite Forms.- 4 The Class Group.- 4.1 Representation and Genera.- 4.2 Composition Algorithms.- 4.3 Generic Characters Revisited.- 4.4 Representation of Integers.- 5 Miscellaneous Facts.- 5.1 Class Number Computations.- 5.2 Extreme Cases and Asymptotic Results.- 6 Quadratic Number Fields.- 6.1 Basic Algebraic Definitions.- 6.2 Algebraic Numbers and Quadratic Fields.- 6.3 Ideals in Quadratic Fields.- 6.4 Binary Quadratic Forms and Classes of Ideals.- 6.5 History.- 7 Composition of Forms.- 7.1 Nonfundamental Discriminants.- 7.2 The General Problem of Composition.- 7.3 Composition in Different Orders.- 8 Miscellaneous Facts II.- 8.1 The Cohen-Lenstra Heuristics.- 8.2 Decomposing Class Groups.- 8.3 Specifying Subgroups of Class Groups.- 8.3.1 Congruence Conditions.- 8.3.2 Exact and Exotic Groups.- 9 The 2-Sylow Subgroup.- 9.1 Classical Results on the Pell Equation.- 9.2 Modern Results.- 9.3 Reciprocity Laws.- 9.4 Special References for Chapter 9.- 10 Factoring with Binary Quadratic Forms.- 10.1 Classical Methods.- 10.2 SQUFOF.- 10.3 CLASNO.- 10.4 SPAR.- 10.4.1 Pollard p — 1.- 10.4.2 SPAR.- 10.5 CFRAC.- 10.6 A General Analysis.- Appendix 1:Tables, Negative Discriminants.- Appendix 2:Tables, Positive Discriminants.

Binary Quadratic Forms Classical Theory and Modern Computations

Product form

£123.49

Includes FREE delivery

RRP £129.99 – you save £6.50 (5%)

Order before 4pm today for delivery by Thu 18 Dec 2025.

A Hardback by Duncan A. Buell

15 in stock


    View other formats and editions of Binary Quadratic Forms Classical Theory and Modern Computations by Duncan A. Buell

    Publisher: Springer
    Publication Date: 8/25/1989 12:00:00 AM
    ISBN13: 9780387970370, 978-0387970370
    ISBN10: 0387970371

    Description

    Book Synopsis
    1 Elementary Concepts.- 2 Reduction of Positive Definite Forms.- 3 Indefinite Forms.- 3.1 Reduction, Cycles.- 3.2 Automorphs, Pell's Equation.- 3.3 Continued Fractions and Indefinite Forms.- 4 The Class Group.- 4.1 Representation and Genera.- 4.2 Composition Algorithms.- 4.3 Generic Characters Revisited.- 4.4 Representation of Integers.- 5 Miscellaneous Facts.- 5.1 Class Number Computations.- 5.2 Extreme Cases and Asymptotic Results.- 6 Quadratic Number Fields.- 6.1 Basic Algebraic Definitions.- 6.2 Algebraic Numbers and Quadratic Fields.- 6.3 Ideals in Quadratic Fields.- 6.4 Binary Quadratic Forms and Classes of Ideals.- 6.5 History.- 7 Composition of Forms.- 7.1 Nonfundamental Discriminants.- 7.2 The General Problem of Composition.- 7.3 Composition in Different Orders.- 8 Miscellaneous Facts II.- 8.1 The Cohen-Lenstra Heuristics.- 8.2 Decomposing Class Groups.- 8.3 Specifying Subgroups of Class Groups.- 9 The 2-Sylow Subgroup.- 9.1 Classical Results on the Pell Equation.- 9.2 ModernR

    Table of Contents
    1 Elementary Concepts.- 2 Reduction of Positive Definite Forms.- 3 Indefinite Forms.- 3.1 Reduction, Cycles.- 3.2 Automorphs, Pell’s Equation.- 3.3 Continued Fractions and Indefinite Forms.- 4 The Class Group.- 4.1 Representation and Genera.- 4.2 Composition Algorithms.- 4.3 Generic Characters Revisited.- 4.4 Representation of Integers.- 5 Miscellaneous Facts.- 5.1 Class Number Computations.- 5.2 Extreme Cases and Asymptotic Results.- 6 Quadratic Number Fields.- 6.1 Basic Algebraic Definitions.- 6.2 Algebraic Numbers and Quadratic Fields.- 6.3 Ideals in Quadratic Fields.- 6.4 Binary Quadratic Forms and Classes of Ideals.- 6.5 History.- 7 Composition of Forms.- 7.1 Nonfundamental Discriminants.- 7.2 The General Problem of Composition.- 7.3 Composition in Different Orders.- 8 Miscellaneous Facts II.- 8.1 The Cohen-Lenstra Heuristics.- 8.2 Decomposing Class Groups.- 8.3 Specifying Subgroups of Class Groups.- 8.3.1 Congruence Conditions.- 8.3.2 Exact and Exotic Groups.- 9 The 2-Sylow Subgroup.- 9.1 Classical Results on the Pell Equation.- 9.2 Modern Results.- 9.3 Reciprocity Laws.- 9.4 Special References for Chapter 9.- 10 Factoring with Binary Quadratic Forms.- 10.1 Classical Methods.- 10.2 SQUFOF.- 10.3 CLASNO.- 10.4 SPAR.- 10.4.1 Pollard p — 1.- 10.4.2 SPAR.- 10.5 CFRAC.- 10.6 A General Analysis.- Appendix 1:Tables, Negative Discriminants.- Appendix 2:Tables, Positive Discriminants.

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account