Description
Book SynopsisIdeal for teaching and self study, this practical book demonstrates how cognitive scientists can conduct Bayesian analyses for many real-life modeling problems. Supported by examples, exercises, computer code and additional resources available online, readers will learn to take full advantage of the exciting possibilities that the Bayesian approach affords.
Trade Review'This book provides the best practical guide to date on how to do Bayesian modeling in cognitive science.' Jay Myung, Ohio State University
'This is a very powerful exposition of how Bayesian methods, and WinBUGS in particular, can be used to deal with cognitive models that are apparently intractable. When we produced WinBUGS, we had no idea it could be used like this - it's amazing and gratifying to see these applications.' David Spiegelhalter, Winton Professor for the Public Understanding of Risk, Statistical Laboratory, Centre for Mathematical Sciences, Cambridge
Table of ContentsPart I. Getting Started: 1. The basics of Bayesian analysis; 2. Getting started with WinBUGS; Part II. Parameter Estimation: 3. Inferences with binomials; 4. Inferences with Gaussians; 5. Some examples of data analysis; 6. Latent mixture models; Part III. Model Selection: 7. Bayesian model comparison; 8. Comparing Gaussian means; 9. Comparing binomial rates; Part IV. Case Studies: 10. Memory retention; 11. Signal detection theory; 12. Psychophysical functions; 13. Extrasensory perception; 14. Multinomial processing trees; 15. The SIMPLE model of memory; 16. The BART model of risk taking; 17. The GCM model of categorization; 18. Heuristic decision-making; 19. Number concept development.