Description

Book Synopsis

This open access book invites readers to learn how to develop artificial intelligence (AI)-based algorithms to perform their research in oceanography. Various examples are exhibited to guide details of how to feed the big ocean data into the AI models to analyze and achieve optimized results. The number of scholars engaged in AI oceanography research will increase exponentially in the next decade. Therefore, this book will serve as a benchmark providing insights for scholars and graduate students interested in oceanography, computer science, and remote sensing.



Table of Contents
Theory and technology of artificial intelligence for oceanography.- Satellite data-driven internal wave forecast model based on machine learning techniques.- Detection and analysis of marine macroalgae based on artificial intelligence.- Tropical cyclone intensity estimation from geostationary satellite imagery.- Reconstructing marine environmental data based on deep learning.- Detecting oceanic processes from space-borne sar imagery using machine learning.- Deep convolutional neural networks-based coastal inundation mapping for un-defined least developed countries: taking madagascar and mozambique as examples.- Ai- based mesoscale eddy study.- Classifying sea ice types from sar images based on deep fully convolutional networks.- Detecting ships and extracting ship's size from SAR images based on deep learning.- Quality control of ocean temperature and salinity data based on machine learning technology.- automatic extraction of internal wave signature from multiple satellite sensors based on deep convolutional neural networks.- Automatic extraction of waterlines from large-scale tidal flats on SAR images and applications based on deep convolutional neural networks.- Forecast of tropical instability waves using deep learning.- Sea surface height prediction based on artificial intelligence.

Artificial Intelligence Oceanography

Product form

£31.49

Includes FREE delivery

RRP £34.99 – you save £3.50 (10%)

Order before 4pm today for delivery by Sat 20 Dec 2025.

A Paperback / softback by Xiaofeng Li, Fan Wang

Out of stock


    View other formats and editions of Artificial Intelligence Oceanography by Xiaofeng Li

    Publisher: Springer Verlag, Singapore
    Publication Date: 04/02/2023
    ISBN13: 9789811963773, 978-9811963773
    ISBN10: 9811963770

    Description

    Book Synopsis

    This open access book invites readers to learn how to develop artificial intelligence (AI)-based algorithms to perform their research in oceanography. Various examples are exhibited to guide details of how to feed the big ocean data into the AI models to analyze and achieve optimized results. The number of scholars engaged in AI oceanography research will increase exponentially in the next decade. Therefore, this book will serve as a benchmark providing insights for scholars and graduate students interested in oceanography, computer science, and remote sensing.



    Table of Contents
    Theory and technology of artificial intelligence for oceanography.- Satellite data-driven internal wave forecast model based on machine learning techniques.- Detection and analysis of marine macroalgae based on artificial intelligence.- Tropical cyclone intensity estimation from geostationary satellite imagery.- Reconstructing marine environmental data based on deep learning.- Detecting oceanic processes from space-borne sar imagery using machine learning.- Deep convolutional neural networks-based coastal inundation mapping for un-defined least developed countries: taking madagascar and mozambique as examples.- Ai- based mesoscale eddy study.- Classifying sea ice types from sar images based on deep fully convolutional networks.- Detecting ships and extracting ship's size from SAR images based on deep learning.- Quality control of ocean temperature and salinity data based on machine learning technology.- automatic extraction of internal wave signature from multiple satellite sensors based on deep convolutional neural networks.- Automatic extraction of waterlines from large-scale tidal flats on SAR images and applications based on deep convolutional neural networks.- Forecast of tropical instability waves using deep learning.- Sea surface height prediction based on artificial intelligence.

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account