Description

Book Synopsis


Table of Contents

1 Production of Bioenergy in the Framework of Circular Economy: A Sustainable Circular System in Ecuador 1
Vega-Quezada Cristhian, Blanco María and Romero Hugo

1.1 Introduction 2

1.1.1 Energy and Bioenergy 2

1.1.2 Ecuadorian Case 4

1.2 A Sustainable Circular System in Ecuador 5

1.2.1 Biogas 5

1.2.1.1 CO2 Emissions 8

1.2.1.2 Potential Electricity Power 12

1.2.2 Biodiesel 14

1.2.2.1 Biodiesel in Ecuador 15

1.2.3 Microalgae Biodiesel 16

1.2.3.1 Biomass Production 18

1.2.3.2 Lipid Extraction 18

1.3 Microalgae versus Palm Oil in Ecuador 19

1.3.1 Palm Oil 20

1.3.2 Microalgae Oil 21

1.3.2.1 Microalgae in Open Ponds 23

1.3.2.2 Microalgae in Laminar Photobioreactor 24

1.4 Discussion 27

1.5 Conclusion 29

Acknowledgements 29

References 30

2 The Impact of Biomass Feedstock Composition and Pre-treatments on Tar Formation during Biomass Gasification 33
John Corton, Paula Blanco-Sanchez P., Zakir Khan, Jon Paul McCalmont, Xi Yu, George Fletcher, Steve Croxton, James Sharp, Manosh C. Paul, Ian A. Watson I. and Iain S. Donnison

2.1 Introduction 34

2.2 Tar Composition 35

2.3 Tar Formation Cell Wall Polymers and Ash Composition 37

2.3.1 The Impact of Plant Type and Blending Upon Tar Production 38

2.3.2 Blending 39

2.3.3 Ash Composition 40

2.4 Thermochemical Pre-treatments for Gasification 41

2.4.1 Torrefaction 41

2.4.2 Slow Pyrolysis 42

2.4.3 Intermediate Pyrolysis 43

2.4.4 Fast Pyrolysis 43

2.5 Processing Options that Exploit Conversion Route Integration 45

2.6 Conclusion 48

Acknowledgements 50

References 50

3 Key Pretreatment Technologies for An Efficient Bioethanol Production from Lignocellulosics 55
Archana Mishra and Sanjoy Ghosh

3.1 Introduction 56

3.2 Pretreatment Methods for Lignocellulosic Biomass 58

3.2.1 Parameters for Effective Pretreatment of Lignocellulosics 59

3.2.2 Important Pretreatment Methods 61

3.2.2.1 Physical or Mechanical Methods 61

3.2.2.2 Physico-chemical Methods 62

3.2.2.3 Chemical Methods 67

3.2.2.4 Biological Methods 74

3.3 Conclusion and Future Perspectives 75

References 78

4 Present Status on Enzymatic Hydrolysis of Lignocellulosic Biomass for Bioethanol Production 85
Arindam Kuila, Vinay Sharma, Vijay Kumar Garlapati, Anshu Singh, Lakshmishri Roy and Rintu Banerjee

4.1 Introduction 86

4.2 Hydrolysis/Saccharification 87

4.2.1 Cellulase 87

4.2.2 Screening of Cellulase-producing Microorganisms 88

4.2.3 Cellulase Production 90

4.2.4 Factors Affecting the Cellulase Mediated Hydrolysis 90

4.3 Future prospects of enzymatic hydrolysis 93

References 93

5 Biological Pretreatment of Lignocellulosic Biomaterials 97
Sandeep Kaur Saggi, Geetika Gupta and Pinaki Dey

5.1 Introduction 97

5.1.1 Different Source for Bioethanol Production 99

5.1.2 Lignocellulosic Materials 100

5.1.3 Cellulose 101

5.1.4 Hemicellulose 102

5.1.5 Xylan 103

5.1.6 Lignin 104

5.1.7 Lignin Carbohydrate Interactions 106

5.2 Pretreatment 106

5.2.1 Pretreatment 106

5.3 Microbial Pretreatment Process 107

5.3.1 Fungi 107

5.3.2 Bacteria 112

5.4 Conclusion 113

References 113

6 Anaerobic Digestion and the Use of Pre-treatments on Lignocellulosic Feedstocks to Improve Biogas Production and Process Economics 121
Laura Williams, Joe Gallagher, David Bryant and Sreenivas Rao Ravella

6.1 Introduction 121

6.2 Feedstocks Available for AD 124

6.2.1 Lignocellulosic Feedstock Analysis and Substrate Suitability 124

6.2.2 Substrate Parameters and Co-digestion 129

6.3 Feedstock Pre-treatment to Improve AD 130

6.3.1 Available Pre-treatment Processes 131

6.3.2 Pre-treatment Effects on Substrate 133

6.3.3 Effects of Pre-treatment on Methane Yields 134

6.4 Pre-treatment and Optimizing AD 136

6.4.1 Advances in Pre-treatment Methods and AD Conditions 136

6.4.2 Value-added Products and AD 138

6.5 Conclusion 140

Acknowledgments 141

References 141

7 Algae: The Future of Bioenergy 149
Nivas Manohar Desai

7.1 Introduction 149

7.2 Technological Innovations for Algae Cultivation, Harvesting and Drying 151

7.2.1 Cultivation Practices 152

7.2.1.1 Open Cultivation Systems 152

7.2.1.2 Closed Cultivation Systems (Photobioreactors) 153

7.2.1.3 Algal Turf Scrubber (ATS) 154

7.2.1.4 Sea-based Cultivation Systems 157

7.2.2 Harvesting of Biomass 158

7.2.2.1 Settling Ponds 159

7.2.2.2 Filtration 159

7.2.2.3 Centrifugation 159

7.2.2.4 Flotation 160

7.2.2.5 Flocculation 160

7.2.2.6 Electrolytic Coagulation 161

7.2.3 Energy Efficiencies of Harvesting Processes 161

7.2.4 Algal Drying 162

7.3 Algae-based Bioenergy Products 162

7.3.1 Biofuel and Biodiesel 163

7.3.2 Biogas (Biomethane Production) 164

7.3.3 Bioethanol 165

7.3.4 Biohydrogen 167

7.3.4.1 Direct Biophotolysis 167

7.3.4.2 Indirect Biophotolysis 168

7.3.4.3 Photo Fermentation 168

7.4 Concluding Remarks 168

Acknowledgement 169

References 169

Index 173

Advances in Biofeedstocks and Biofuels

Product form

£152.06

Includes FREE delivery

RRP £168.95 – you save £16.89 (9%)

Order before 4pm today for delivery by Tue 23 Dec 2025.

A Hardback by Lalit Kumar Singh, Gaurav Chaudhary

15 in stock


    View other formats and editions of Advances in Biofeedstocks and Biofuels by Lalit Kumar Singh

    Publisher: John Wiley & Sons Inc
    Publication Date: 17/03/2017
    ISBN13: 9781119117254, 978-1119117254
    ISBN10: 1119117259

    Description

    Book Synopsis


    Table of Contents

    1 Production of Bioenergy in the Framework of Circular Economy: A Sustainable Circular System in Ecuador 1
    Vega-Quezada Cristhian, Blanco María and Romero Hugo

    1.1 Introduction 2

    1.1.1 Energy and Bioenergy 2

    1.1.2 Ecuadorian Case 4

    1.2 A Sustainable Circular System in Ecuador 5

    1.2.1 Biogas 5

    1.2.1.1 CO2 Emissions 8

    1.2.1.2 Potential Electricity Power 12

    1.2.2 Biodiesel 14

    1.2.2.1 Biodiesel in Ecuador 15

    1.2.3 Microalgae Biodiesel 16

    1.2.3.1 Biomass Production 18

    1.2.3.2 Lipid Extraction 18

    1.3 Microalgae versus Palm Oil in Ecuador 19

    1.3.1 Palm Oil 20

    1.3.2 Microalgae Oil 21

    1.3.2.1 Microalgae in Open Ponds 23

    1.3.2.2 Microalgae in Laminar Photobioreactor 24

    1.4 Discussion 27

    1.5 Conclusion 29

    Acknowledgements 29

    References 30

    2 The Impact of Biomass Feedstock Composition and Pre-treatments on Tar Formation during Biomass Gasification 33
    John Corton, Paula Blanco-Sanchez P., Zakir Khan, Jon Paul McCalmont, Xi Yu, George Fletcher, Steve Croxton, James Sharp, Manosh C. Paul, Ian A. Watson I. and Iain S. Donnison

    2.1 Introduction 34

    2.2 Tar Composition 35

    2.3 Tar Formation Cell Wall Polymers and Ash Composition 37

    2.3.1 The Impact of Plant Type and Blending Upon Tar Production 38

    2.3.2 Blending 39

    2.3.3 Ash Composition 40

    2.4 Thermochemical Pre-treatments for Gasification 41

    2.4.1 Torrefaction 41

    2.4.2 Slow Pyrolysis 42

    2.4.3 Intermediate Pyrolysis 43

    2.4.4 Fast Pyrolysis 43

    2.5 Processing Options that Exploit Conversion Route Integration 45

    2.6 Conclusion 48

    Acknowledgements 50

    References 50

    3 Key Pretreatment Technologies for An Efficient Bioethanol Production from Lignocellulosics 55
    Archana Mishra and Sanjoy Ghosh

    3.1 Introduction 56

    3.2 Pretreatment Methods for Lignocellulosic Biomass 58

    3.2.1 Parameters for Effective Pretreatment of Lignocellulosics 59

    3.2.2 Important Pretreatment Methods 61

    3.2.2.1 Physical or Mechanical Methods 61

    3.2.2.2 Physico-chemical Methods 62

    3.2.2.3 Chemical Methods 67

    3.2.2.4 Biological Methods 74

    3.3 Conclusion and Future Perspectives 75

    References 78

    4 Present Status on Enzymatic Hydrolysis of Lignocellulosic Biomass for Bioethanol Production 85
    Arindam Kuila, Vinay Sharma, Vijay Kumar Garlapati, Anshu Singh, Lakshmishri Roy and Rintu Banerjee

    4.1 Introduction 86

    4.2 Hydrolysis/Saccharification 87

    4.2.1 Cellulase 87

    4.2.2 Screening of Cellulase-producing Microorganisms 88

    4.2.3 Cellulase Production 90

    4.2.4 Factors Affecting the Cellulase Mediated Hydrolysis 90

    4.3 Future prospects of enzymatic hydrolysis 93

    References 93

    5 Biological Pretreatment of Lignocellulosic Biomaterials 97
    Sandeep Kaur Saggi, Geetika Gupta and Pinaki Dey

    5.1 Introduction 97

    5.1.1 Different Source for Bioethanol Production 99

    5.1.2 Lignocellulosic Materials 100

    5.1.3 Cellulose 101

    5.1.4 Hemicellulose 102

    5.1.5 Xylan 103

    5.1.6 Lignin 104

    5.1.7 Lignin Carbohydrate Interactions 106

    5.2 Pretreatment 106

    5.2.1 Pretreatment 106

    5.3 Microbial Pretreatment Process 107

    5.3.1 Fungi 107

    5.3.2 Bacteria 112

    5.4 Conclusion 113

    References 113

    6 Anaerobic Digestion and the Use of Pre-treatments on Lignocellulosic Feedstocks to Improve Biogas Production and Process Economics 121
    Laura Williams, Joe Gallagher, David Bryant and Sreenivas Rao Ravella

    6.1 Introduction 121

    6.2 Feedstocks Available for AD 124

    6.2.1 Lignocellulosic Feedstock Analysis and Substrate Suitability 124

    6.2.2 Substrate Parameters and Co-digestion 129

    6.3 Feedstock Pre-treatment to Improve AD 130

    6.3.1 Available Pre-treatment Processes 131

    6.3.2 Pre-treatment Effects on Substrate 133

    6.3.3 Effects of Pre-treatment on Methane Yields 134

    6.4 Pre-treatment and Optimizing AD 136

    6.4.1 Advances in Pre-treatment Methods and AD Conditions 136

    6.4.2 Value-added Products and AD 138

    6.5 Conclusion 140

    Acknowledgments 141

    References 141

    7 Algae: The Future of Bioenergy 149
    Nivas Manohar Desai

    7.1 Introduction 149

    7.2 Technological Innovations for Algae Cultivation, Harvesting and Drying 151

    7.2.1 Cultivation Practices 152

    7.2.1.1 Open Cultivation Systems 152

    7.2.1.2 Closed Cultivation Systems (Photobioreactors) 153

    7.2.1.3 Algal Turf Scrubber (ATS) 154

    7.2.1.4 Sea-based Cultivation Systems 157

    7.2.2 Harvesting of Biomass 158

    7.2.2.1 Settling Ponds 159

    7.2.2.2 Filtration 159

    7.2.2.3 Centrifugation 159

    7.2.2.4 Flotation 160

    7.2.2.5 Flocculation 160

    7.2.2.6 Electrolytic Coagulation 161

    7.2.3 Energy Efficiencies of Harvesting Processes 161

    7.2.4 Algal Drying 162

    7.3 Algae-based Bioenergy Products 162

    7.3.1 Biofuel and Biodiesel 163

    7.3.2 Biogas (Biomethane Production) 164

    7.3.3 Bioethanol 165

    7.3.4 Biohydrogen 167

    7.3.4.1 Direct Biophotolysis 167

    7.3.4.2 Indirect Biophotolysis 168

    7.3.4.3 Photo Fermentation 168

    7.4 Concluding Remarks 168

    Acknowledgement 169

    References 169

    Index 173

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account