Description

Book Synopsis
Advanced Computational Vibroacoustics presents an advanced computational method for the prediction of sound and structural vibrations, in low- and medium-frequency ranges - complex structural acoustics and fluid-structure interaction systems encountered in aerospace, automotive, railway, naval, and energy-production industries. The formulations are presented within a unified computational strategy and are adapted for the present and future generation of massively parallel computers. A reduced-order computational model is constructed using the finite element method for the damped structure and the dissipative internal acoustic fluid (gas or liquid with or without free surface) and using an appropriate symmetric boundary-element method for the external acoustic fluid (gas or liquid). This book allows direct access to computational methods that have been adapted for the future evolution of general commercial software. Written for the global market, it is an invaluable resource for academi

Table of Contents
1. Principal objectives and a strategy for modeling vibroacoustic systems; 2. Definition of the vibroacoustic system; 3. External inviscid acoustic fluid equations; 4. Internal dissipative acoustic fluid equations; 5. Structure equations; 6. Vibroacoustic boundary-value problem; 7. Computational vibroacoustic model; 8. Reduced-order computational model; 9. Uncertainty quantification in computational vibroacoustics; 10. Symmetric BEM without spurious frequencies for the external acoustic fluid.

Advanced Computational Vibroacoustics

Product form

£55.09

Includes FREE delivery

RRP £57.99 – you save £2.90 (5%)

Order before 4pm tomorrow for delivery by Fri 19 Dec 2025.

A Hardback by Roger Ohayon, Christian Soize

1 in stock


    View other formats and editions of Advanced Computational Vibroacoustics by Roger Ohayon

    Publisher: Cambridge University Press
    Publication Date: 11/08/2014
    ISBN13: 9781107071711, 978-1107071711
    ISBN10: 1107071712

    Description

    Book Synopsis
    Advanced Computational Vibroacoustics presents an advanced computational method for the prediction of sound and structural vibrations, in low- and medium-frequency ranges - complex structural acoustics and fluid-structure interaction systems encountered in aerospace, automotive, railway, naval, and energy-production industries. The formulations are presented within a unified computational strategy and are adapted for the present and future generation of massively parallel computers. A reduced-order computational model is constructed using the finite element method for the damped structure and the dissipative internal acoustic fluid (gas or liquid with or without free surface) and using an appropriate symmetric boundary-element method for the external acoustic fluid (gas or liquid). This book allows direct access to computational methods that have been adapted for the future evolution of general commercial software. Written for the global market, it is an invaluable resource for academi

    Table of Contents
    1. Principal objectives and a strategy for modeling vibroacoustic systems; 2. Definition of the vibroacoustic system; 3. External inviscid acoustic fluid equations; 4. Internal dissipative acoustic fluid equations; 5. Structure equations; 6. Vibroacoustic boundary-value problem; 7. Computational vibroacoustic model; 8. Reduced-order computational model; 9. Uncertainty quantification in computational vibroacoustics; 10. Symmetric BEM without spurious frequencies for the external acoustic fluid.

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account