Description

Book Synopsis
This book is the result of several years of work by the authors on different aspects of zeta functions and related topics. The aim is twofold. On one hand, a considerable number of useful formulas, essential for dealing with the different aspects of zeta-function regularization (analytic continuation, asymptotic expansions), many of which appear here, in book format, for the first time are presented. On the other hand, the authors show explicitly how to make use of such formulas and techniques in practical applications to physical problems of very different nature. Virtually all types of zeta functions are dealt with in the book.

Table of Contents
Part 1 The Riemann Zeta function: Riemann, Hurwitz, Epstein, Selberg and related zeta functions; analytic continuation - practical uses for series summation; asymptotic expansion of "zeta". Part 2 Zeta-function regularization of sums over known spectrum: the zeta-function regularization theorem; multiple zeta-functions with arbitrary exponents. Part 3 Zeta-function regularization when the spectrum is not known: zeta-function vs heat-kernel regularization; small-"t" asymptotic expansion of the heat-kernel. Part 4 The Casimir effect in flat space-time with compact spatial part: simply connected compact manifold with constant curvature; the Selberg trace formula for compact hyperbolic manifolds. Part 5 Finite temperature effects for theories defined on compact hyperbolic manifolds: basic formalism for the finite-temperature effective potential; the finite-temperature thermodynamic potential for manifolds with a compact spatial part. Part 6 Properties of the chemical potential in higher-dimensional manifolds: the flat-manifold case; the constant non-zero curvature case. Part 7 Strings at non-zero temperature and 2d gravity: free energy for the Bosonic string; vacuum energy for Torus compactified strings. Part 8 Membranes at non-zero temperatures: supermembrane free energy; free energy for the compactified supermembranes and modular invariance; and others.

Zeta Regularization Techniques With Applications

Product form

£90.00

Includes FREE delivery

RRP £100.00 – you save £10.00 (10%)

Order before 4pm today for delivery by Sat 24 Jan 2026.

A Hardback by Andrei A Bytsenko, Emilio Elizalde, Sergei D Odintsov

Out of stock


    View other formats and editions of Zeta Regularization Techniques With Applications by Andrei A Bytsenko

    Publisher: World Scientific Publishing Co Pte Ltd
    Publication Date: 01/05/1994
    ISBN13: 9789810214418, 978-9810214418
    ISBN10: 9810214413

    Description

    Book Synopsis
    This book is the result of several years of work by the authors on different aspects of zeta functions and related topics. The aim is twofold. On one hand, a considerable number of useful formulas, essential for dealing with the different aspects of zeta-function regularization (analytic continuation, asymptotic expansions), many of which appear here, in book format, for the first time are presented. On the other hand, the authors show explicitly how to make use of such formulas and techniques in practical applications to physical problems of very different nature. Virtually all types of zeta functions are dealt with in the book.

    Table of Contents
    Part 1 The Riemann Zeta function: Riemann, Hurwitz, Epstein, Selberg and related zeta functions; analytic continuation - practical uses for series summation; asymptotic expansion of "zeta". Part 2 Zeta-function regularization of sums over known spectrum: the zeta-function regularization theorem; multiple zeta-functions with arbitrary exponents. Part 3 Zeta-function regularization when the spectrum is not known: zeta-function vs heat-kernel regularization; small-"t" asymptotic expansion of the heat-kernel. Part 4 The Casimir effect in flat space-time with compact spatial part: simply connected compact manifold with constant curvature; the Selberg trace formula for compact hyperbolic manifolds. Part 5 Finite temperature effects for theories defined on compact hyperbolic manifolds: basic formalism for the finite-temperature effective potential; the finite-temperature thermodynamic potential for manifolds with a compact spatial part. Part 6 Properties of the chemical potential in higher-dimensional manifolds: the flat-manifold case; the constant non-zero curvature case. Part 7 Strings at non-zero temperature and 2d gravity: free energy for the Bosonic string; vacuum energy for Torus compactified strings. Part 8 Membranes at non-zero temperatures: supermembrane free energy; free energy for the compactified supermembranes and modular invariance; and others.

    Recently viewed products

    © 2026 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account