Description
Book SynopsisComputer simulators are continuously confronted with questions concerning the choice of a particular technique for a given application. A wide variety of tools exist, so the choice of technique requires a good understanding of the basic principles. This title explains the physics behind the 'recipes' of molecular simulation for materials science.
Trade Review"…brilliantly maintains a balance between explaining the physical phenomena and performing computations. Its marvelous writing style invites scientists and students to deepen their knowledge of MD simulations." --ComputingReviews.com, January 11, 2013 "... this book brilliantly lays down the scientific foundations of the simulational approach ..." --Prof. Kurt Binder in Physics World, 1997 "... a treasure. The book is a marvellous mix of just enough formalism with an informal and readable style, sufficient detail to understand methodological advances, appropriate mathematics ..." --Prof. Mark A. Ratner in Physics Today, 1997
Table of Contents1. Introduction Part I Basics 2. Statistical Mechanics 3. Monte Carlo Simulations 4. Molecular Dynamics Simulations Part II Ensembles 5. Monte Carlo Simulations in Various Ensembles 6. Molecular Dynamics in Various Ensembles Part III Free Energies and Phase Equilibria 7. Free Energy Calculations 8. The Gibbs Ensemble 9. Other Methods to Study Coexistence 10. Free Energies of Solids 11. Free Energy of Chain Molecules Part IV Advanced Techniques 12. Long-Range Interactions 13. Biased Monte Carlo Schemes 14. Accelerating Monte Carlo Sampling 15. Tackling Time-Scale Problems 16. Rare Events 17. Dissipative Particle Dynamics