Description

Book Synopsis
It is generally believed that most of the matter in the universe is dark, i.e. cannot be detected from the light which it emits (or fails to emit). Its presence is inferred indirectly from the motions of astronomical objects, specifically stellar, galactic, and galaxy cluster/supercluster observations. It is also required in order to enable gravity to amplify the small fluctuations in the cosmic microwave background enough to form the large-scale structures that we see in the universe today. For each of the stellar, galactic, and galaxy cluster/supercluster observations the basic principle is that if we measure velocities in some region, then there has to be enough mass there for gravity to stop all the objects flying apart. Dark matter has important consequences for the evolution of the universe and the structure within it. According to general relativity, the universe must conform to one of three possible types: open, flat, or closed. The total amount of mass and energy in the universe determines which of the three possibilities applies to the universe. In the case of an open universe, the total mass and energy density (denoted by the Greek letter Ù) is less than unity. If the universe is closed, Ù is greater than unity. For the case where Ù is exactly equal to one the universe is "flat". This new book details leading-edge research from around the globe.

Trends in Dark Matter Research

Product form

£146.24

Includes FREE delivery

RRP £194.99 – you save £48.75 (25%)

Order before 4pm today for delivery by Wed 17 Dec 2025.

A Hardback by J Val Blain

Out of stock


    View other formats and editions of Trends in Dark Matter Research by J Val Blain

    Publisher: Nova Science Publishers Inc
    Publication Date: 04/07/2005
    ISBN13: 9781594542480, 978-1594542480
    ISBN10: 1594542481

    Description

    Book Synopsis
    It is generally believed that most of the matter in the universe is dark, i.e. cannot be detected from the light which it emits (or fails to emit). Its presence is inferred indirectly from the motions of astronomical objects, specifically stellar, galactic, and galaxy cluster/supercluster observations. It is also required in order to enable gravity to amplify the small fluctuations in the cosmic microwave background enough to form the large-scale structures that we see in the universe today. For each of the stellar, galactic, and galaxy cluster/supercluster observations the basic principle is that if we measure velocities in some region, then there has to be enough mass there for gravity to stop all the objects flying apart. Dark matter has important consequences for the evolution of the universe and the structure within it. According to general relativity, the universe must conform to one of three possible types: open, flat, or closed. The total amount of mass and energy in the universe determines which of the three possibilities applies to the universe. In the case of an open universe, the total mass and energy density (denoted by the Greek letter Ù) is less than unity. If the universe is closed, Ù is greater than unity. For the case where Ù is exactly equal to one the universe is "flat". This new book details leading-edge research from around the globe.

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account