Description

Book Synopsis

Joel Hass received his PhD from the University of California - Berkeley. He is currently a professor of mathematics at the University of California - Davis. He has coauthored widely used calculus texts as well as calculus study guides. He is currently on the editorial board of several publications, including the Notices of the American Mathematical Society. He has been a member of the Institute for Advanced Study at Princeton University and of the Mathematical Sciences Research Institute, and he was a Sloan Research Fellow. Hass's current areas of research include the geometry of proteins, three dimensional manifolds, applied math, and computational complexity. In his free time, Hass enjoys kayaking.

Christopher Heil received his PhD from the University of Maryland. He is currently a professor of mathematics at the Georgia Institute of Technology. He is the author of a graduate text on analysis and a number of highly cited research survey art

Table of Contents
1. Functions

  • 1.1 Functions and Their Graphs
  • 1.2 Combining Functions; Shifting and Scaling Graphs
  • 1.3 Trigonometric Functions
  • 1.4 Graphing with Software
  • Questions to Guide Your Review
  • Practice Exercises
  • Additional and Advanced Exercises
  • Technology Application Projects
2. Limits and Continuity
  • 2.1 Rates of Change and Tangent Lines to Curves
  • 2.2 Limit of a Function and Limit Laws
  • 2.3 The Precise Definition of a Limit
  • 2.4 One-Sided Limits
  • 2.5 Limits Involving Infinity; Asymptotes of Graphs
  • 2.6 Continuity
  • Questions to Guide Your Review
  • Practice Exercises
  • Additional and Advanced Exercises
  • Technology Application Projects
3. Derivatives
  • 3.1 Tangent Lines and the Derivative at a Point
  • 3.2 The Derivative as a Function
  • 3.3 Differentiation Rules
  • 3.4 The Derivative as a Rate of Change
  • 3.5 Derivatives of Trigonometric Functions
  • 3.6 The Chain Rule
  • 3.7 Implicit Differentiation
  • 3.8 Derivatives of Inverse Functions and Logarithms
  • 3.9 Related Rates
  • 3.10 Linearization and Differentials
  • Questions to Guide Your Review
  • Practice Exercises
  • Additional and Advanced Exercises
  • Technology Application Projects
4. Applications of Derivatives
  • 4.1 Extreme Values of Functions on Closed Intervals
  • 4.2 The Mean Value Theorem
  • 4.3 Monotonic Functions and the First Derivative Test
  • 4.4 Concavity and Curve Sketching
  • 4.5 Applied Optimization
  • 4.6 Newton's Method
  • 4.7 Antiderivatives
  • Questions to Guide Your Review
  • Practice Exercises
  • Additional and Advanced Exercises
  • Technology Application Projects
5. Integrals
  • 5.1 Area and Estimating with Finite Sums
  • 5.2 Sigma Notation and Limits of Finite Sums
  • 5.3 The Definite Integral
  • 5.4 The Fundamental Theorem of Calculus
  • 5.5 Indefinite Integrals and the Substitution Method
  • 5.6 Definite Integral Substitutions and the Area Between Curves
  • Questions to Guide Your Review
  • Practice Exercises
  • Additional and Advanced Exercises
  • Technology Application Projects
6. Applications of Definite Integrals
  • 6.1 Volumes Using Cross-Sections
  • 6.2 Volumes Using Cylindrical Shells
  • 6.3 Arc Length
  • 6.4 Areas of Surfaces of Revolution
  • 6.5 Work and Fluid Forces
  • 6.6 Moments and Centers of Mass
  • Questions to Guide Your Review
  • Practice Exercises
  • Additional and Advanced Exercises
  • Technology Application Projects
7. Transcendental Functions
  • 7.1 Inverse Functions and Their Derivatives
  • 7.2 Natural Logarithms
  • 7.3 Exponential Functions
  • 7.4 Exponential Change and Separable Differential Equations
  • 7.5 Indeterminate Forms and L'Hôpital's Rule
  • 7.6 Inverse Trigonometric Functions
  • 7.7 Hyperbolic Functions
  • 7.8 Relative Rates of Growth
  • Questions to Guide Your Review
  • Practice Exercises
  • Additional and Advanced Exercises
8. Techniques of Integration
  • 8.1 Using Basic Integration Formulas
  • 8.2 Integration by Parts
  • 8.3 Trigonometric Integrals
  • 8.4 Trigonometric Substitutions
  • 8.5 Integration of Rational Functions by Partial Fractions
  • 8.6 Integral Tables and Computer Algebra Systems
  • 8.7 Numerical Integration
  • 8.8 Improper Integrals
  • Questions to Guide Your Review
  • Practice Exercises
  • Additional and Advanced Exercises
  • Technology Application Projects
9. Infinite Sequences and Series
  • 9.1 Sequences
  • 9.2 Infinite Series
  • 9.3 The Integral Test
  • 9.4 Comparison Tests
  • 9.5 Absolute Convergence; The Ratio and Root Tests
  • 9.6 Alternating Series and Conditional Convergence
  • 9.7 Power Series
  • 9.8 Taylor and Maclaurin Series
  • 9.9 Convergence of Taylor Series
  • 9.10 Applications of Taylor Series
  • Questions to Guide Your Review
  • Practice Exercises
  • Additional and Advanced Exercises
  • Technology Application Projects
10. Parametric Equations and Polar Coordinates
  • 10.1 Parametrizations of Plane Curves
  • 10.2 Calculus with Parametric Curves
  • 10.3 Polar Coordinates
  • 10.4 Graphing Polar Coordinate Equations
  • 10.5 Areas and Lengths in Polar Coordinates
  • 10.6 Conic Sections
  • 10.7 Conics in Polar Coordinates
  • Questions to Guide Your Review
  • Practice Exercises
  • Additional and Advanced Exercises
  • Technology Application Projects
11. Vectors and the Geometry of Space
  • 11.1 Three-Dimensional Coordinate Systems
  • 11.2 Vectors
  • 11.3 The Dot Product
  • 11.4 The Cross Product
  • 11.5 Lines and Planes in Space
  • 11.6 Cylinders and Quadric Surfaces
  • Questions to Guide Your Review
  • Practice Exercises
  • Additional and Advanced Exercises
  • Technology Application Projects
12. Vector-Valued Functions and Motion in Space
  • 12.1 Curves in Space and Their Tangents
  • 12.2 Integrals of Vector Functions; Projectile Motion
  • 12.3 Arc Length in Space
  • 12.4 Curvature and Normal Vectors of a Curve
  • 12.5 Tangential and Normal Components of Acceleration
  • 12.6 Velocity and Acceleration in Polar Coordinates
  • Questions to Guide Your Review
  • Practice Exercises
  • Additional and Advanced Exercises
  • Technology Application Projects
13. Partial Derivatives
  • 13.1 Functions of Several Variables
  • 13.2 Limits and Continuity in Higher Dimensions
  • 13.3 Partial Derivatives
  • 13.4 The Chain Rule
  • 13.5 Directional Derivatives and Gradient Vectors
  • 13.6 Tangent Planes and Differentials
  • 13.7 Extreme Values and Saddle Points
  • 13.8 Lagrange Multipliers
  • 13.9 Taylor’s Formula for Two Variables
  • 13.10 Partial Derivatives with Constrained Variables
  • Questions to Guide Your Review
  • Practice Exercises
  • Additional and Advanced Exercises
  • Technology Application Projects
14. Multiple Integrals
  • 14.1 Double and Iterated Integrals over Rectangles
  • 14.2 Double Integrals over General Regions
  • 14.3 Area by Double Integration
  • 14.4 Double Integrals in Polar Form
  • 14.5 Triple Integrals in Rectangular Coordinates
  • 14.6 Applications
  • 14.7 Triple Integrals in Cylindrical and Spherical Coordinates
  • 14.8 Substitutions in Multiple Integrals
  • Questions to Guide Your Review
  • Practice Exercises
  • Additional and Advanced Exercises
  • Technology Application Projects
15. Integrals and Vector Fields
  • 15.1 Line Integrals of Scalar Functions
  • 15.2 Vector Fields and Line Integrals: Work, Circulation, and Flux
  • 15.3 Path Independence, Conservative Fields, and Potential Functions
  • 15.4 Green’s Theorem in the Plane
  • 15.5 Surfaces and Area
  • 15.6 Surface Integrals
  • 15.7 Stokes’ Theorem
  • 15.8 The Divergence Theorem and a Unified Theory
  • Questions to Guide Your Review
  • Practice Exercises
  • Additional and Advanced Exercises
  • Technology Application Projects
16. First-Order Differential Equations
  • 16.1 Solutions, Slope Fields, and Euler’s Method
  • 16.1 Solutions, Slope Fields, and Euler’s Method
  • 16.2 First-Order Linear Equations
  • 16.3 Applications
  • 16.4 Graphical Solutions of Autonomous Equations
  • 16.5 Systems of Equations and Phase Planes
  • Questions to Guide Your Review
  • Practice Exercises
  • Additional and Advanced Exercises
  • Technology Application Projects
17. Second-Order Differential Equations (online)
  • 17.1 Second-Order Linear Equations
  • 17.2 Nonhomogeneous Linear Equations
  • 17.3 Applications
  • 17.4 Euler Equations
  • 17.5 Power-Series Solutions
18. Complex Functions (online)
  • 18.1 Complex Numbers
  • 18.2 Functions of a Complex Variable
  • 18.3 Derivatives
  • 18.4 The Cauchy-Riemann Equations
  • 18.5 Complex Power Series
  • 18.6 Some Complex Functions
  • 18.7 Conformal Maps
  • Questions to Guide Your Review
  • Additional and Advanced Exercises
19. Fourier Series and Wavelets (online)
  • 19.1 Periodic Functions
  • 19.2 Summing Sines and Cosines
  • 19.3 Vectors and Approximation in Three and More Dimensions
  • 19.4 Approximation of Functions
  • 19.5 Advanced Topic: The Haar System and Wavelets
  • Questions to Guide Your Review
  • Additional and Advanced Exercises
Appendix A
  • A.1 Real Numbers and the Real Line
  • A.2 Mathematical Induction
  • A.3 Lines, Circles, and Parabolas
  • A.4 Proofs of Limit Theorems
  • A.5 Commonly Occurring Limits
  • A.6 Theory of the Real Numbers
  • A.7 Probability
  • A.8 The Distributive Law for Vector Cross Products
  • A.9 The Mixed Derivative Theorem and the Increment Theorem
Appendix B (online)
  • B.1 Determinants
  • B.2 Extreme Values and Saddle Points for Functions of More than Two Variables
  • B.3 The Method of Gradient Descent
Answers to Odd-Numbered Exercises Applications Index Subject Index Credits A Brief Table of Integrals

Thomas Calculus SI Units

Product form

£75.04

Includes FREE delivery

RRP £78.99 – you save £3.95 (5%)

Order before 4pm today for delivery by Tue 23 Dec 2025.

A Paperback / softback by Joel Hass, Christopher Heil, Maurice Weir

15 in stock


    View other formats and editions of Thomas Calculus SI Units by Joel Hass

    Publisher: Pearson Education Limited
    Publication Date: 25/07/2023
    ISBN13: 9781292459677, 978-1292459677
    ISBN10: 1292459670

    Description

    Book Synopsis

    Joel Hass received his PhD from the University of California - Berkeley. He is currently a professor of mathematics at the University of California - Davis. He has coauthored widely used calculus texts as well as calculus study guides. He is currently on the editorial board of several publications, including the Notices of the American Mathematical Society. He has been a member of the Institute for Advanced Study at Princeton University and of the Mathematical Sciences Research Institute, and he was a Sloan Research Fellow. Hass's current areas of research include the geometry of proteins, three dimensional manifolds, applied math, and computational complexity. In his free time, Hass enjoys kayaking.

    Christopher Heil received his PhD from the University of Maryland. He is currently a professor of mathematics at the Georgia Institute of Technology. He is the author of a graduate text on analysis and a number of highly cited research survey art

    Table of Contents
    1. Functions

    • 1.1 Functions and Their Graphs
    • 1.2 Combining Functions; Shifting and Scaling Graphs
    • 1.3 Trigonometric Functions
    • 1.4 Graphing with Software
    • Questions to Guide Your Review
    • Practice Exercises
    • Additional and Advanced Exercises
    • Technology Application Projects
    2. Limits and Continuity
    • 2.1 Rates of Change and Tangent Lines to Curves
    • 2.2 Limit of a Function and Limit Laws
    • 2.3 The Precise Definition of a Limit
    • 2.4 One-Sided Limits
    • 2.5 Limits Involving Infinity; Asymptotes of Graphs
    • 2.6 Continuity
    • Questions to Guide Your Review
    • Practice Exercises
    • Additional and Advanced Exercises
    • Technology Application Projects
    3. Derivatives
    • 3.1 Tangent Lines and the Derivative at a Point
    • 3.2 The Derivative as a Function
    • 3.3 Differentiation Rules
    • 3.4 The Derivative as a Rate of Change
    • 3.5 Derivatives of Trigonometric Functions
    • 3.6 The Chain Rule
    • 3.7 Implicit Differentiation
    • 3.8 Derivatives of Inverse Functions and Logarithms
    • 3.9 Related Rates
    • 3.10 Linearization and Differentials
    • Questions to Guide Your Review
    • Practice Exercises
    • Additional and Advanced Exercises
    • Technology Application Projects
    4. Applications of Derivatives
    • 4.1 Extreme Values of Functions on Closed Intervals
    • 4.2 The Mean Value Theorem
    • 4.3 Monotonic Functions and the First Derivative Test
    • 4.4 Concavity and Curve Sketching
    • 4.5 Applied Optimization
    • 4.6 Newton's Method
    • 4.7 Antiderivatives
    • Questions to Guide Your Review
    • Practice Exercises
    • Additional and Advanced Exercises
    • Technology Application Projects
    5. Integrals
    • 5.1 Area and Estimating with Finite Sums
    • 5.2 Sigma Notation and Limits of Finite Sums
    • 5.3 The Definite Integral
    • 5.4 The Fundamental Theorem of Calculus
    • 5.5 Indefinite Integrals and the Substitution Method
    • 5.6 Definite Integral Substitutions and the Area Between Curves
    • Questions to Guide Your Review
    • Practice Exercises
    • Additional and Advanced Exercises
    • Technology Application Projects
    6. Applications of Definite Integrals
    • 6.1 Volumes Using Cross-Sections
    • 6.2 Volumes Using Cylindrical Shells
    • 6.3 Arc Length
    • 6.4 Areas of Surfaces of Revolution
    • 6.5 Work and Fluid Forces
    • 6.6 Moments and Centers of Mass
    • Questions to Guide Your Review
    • Practice Exercises
    • Additional and Advanced Exercises
    • Technology Application Projects
    7. Transcendental Functions
    • 7.1 Inverse Functions and Their Derivatives
    • 7.2 Natural Logarithms
    • 7.3 Exponential Functions
    • 7.4 Exponential Change and Separable Differential Equations
    • 7.5 Indeterminate Forms and L'Hôpital's Rule
    • 7.6 Inverse Trigonometric Functions
    • 7.7 Hyperbolic Functions
    • 7.8 Relative Rates of Growth
    • Questions to Guide Your Review
    • Practice Exercises
    • Additional and Advanced Exercises
    8. Techniques of Integration
    • 8.1 Using Basic Integration Formulas
    • 8.2 Integration by Parts
    • 8.3 Trigonometric Integrals
    • 8.4 Trigonometric Substitutions
    • 8.5 Integration of Rational Functions by Partial Fractions
    • 8.6 Integral Tables and Computer Algebra Systems
    • 8.7 Numerical Integration
    • 8.8 Improper Integrals
    • Questions to Guide Your Review
    • Practice Exercises
    • Additional and Advanced Exercises
    • Technology Application Projects
    9. Infinite Sequences and Series
    • 9.1 Sequences
    • 9.2 Infinite Series
    • 9.3 The Integral Test
    • 9.4 Comparison Tests
    • 9.5 Absolute Convergence; The Ratio and Root Tests
    • 9.6 Alternating Series and Conditional Convergence
    • 9.7 Power Series
    • 9.8 Taylor and Maclaurin Series
    • 9.9 Convergence of Taylor Series
    • 9.10 Applications of Taylor Series
    • Questions to Guide Your Review
    • Practice Exercises
    • Additional and Advanced Exercises
    • Technology Application Projects
    10. Parametric Equations and Polar Coordinates
    • 10.1 Parametrizations of Plane Curves
    • 10.2 Calculus with Parametric Curves
    • 10.3 Polar Coordinates
    • 10.4 Graphing Polar Coordinate Equations
    • 10.5 Areas and Lengths in Polar Coordinates
    • 10.6 Conic Sections
    • 10.7 Conics in Polar Coordinates
    • Questions to Guide Your Review
    • Practice Exercises
    • Additional and Advanced Exercises
    • Technology Application Projects
    11. Vectors and the Geometry of Space
    • 11.1 Three-Dimensional Coordinate Systems
    • 11.2 Vectors
    • 11.3 The Dot Product
    • 11.4 The Cross Product
    • 11.5 Lines and Planes in Space
    • 11.6 Cylinders and Quadric Surfaces
    • Questions to Guide Your Review
    • Practice Exercises
    • Additional and Advanced Exercises
    • Technology Application Projects
    12. Vector-Valued Functions and Motion in Space
    • 12.1 Curves in Space and Their Tangents
    • 12.2 Integrals of Vector Functions; Projectile Motion
    • 12.3 Arc Length in Space
    • 12.4 Curvature and Normal Vectors of a Curve
    • 12.5 Tangential and Normal Components of Acceleration
    • 12.6 Velocity and Acceleration in Polar Coordinates
    • Questions to Guide Your Review
    • Practice Exercises
    • Additional and Advanced Exercises
    • Technology Application Projects
    13. Partial Derivatives
    • 13.1 Functions of Several Variables
    • 13.2 Limits and Continuity in Higher Dimensions
    • 13.3 Partial Derivatives
    • 13.4 The Chain Rule
    • 13.5 Directional Derivatives and Gradient Vectors
    • 13.6 Tangent Planes and Differentials
    • 13.7 Extreme Values and Saddle Points
    • 13.8 Lagrange Multipliers
    • 13.9 Taylor’s Formula for Two Variables
    • 13.10 Partial Derivatives with Constrained Variables
    • Questions to Guide Your Review
    • Practice Exercises
    • Additional and Advanced Exercises
    • Technology Application Projects
    14. Multiple Integrals
    • 14.1 Double and Iterated Integrals over Rectangles
    • 14.2 Double Integrals over General Regions
    • 14.3 Area by Double Integration
    • 14.4 Double Integrals in Polar Form
    • 14.5 Triple Integrals in Rectangular Coordinates
    • 14.6 Applications
    • 14.7 Triple Integrals in Cylindrical and Spherical Coordinates
    • 14.8 Substitutions in Multiple Integrals
    • Questions to Guide Your Review
    • Practice Exercises
    • Additional and Advanced Exercises
    • Technology Application Projects
    15. Integrals and Vector Fields
    • 15.1 Line Integrals of Scalar Functions
    • 15.2 Vector Fields and Line Integrals: Work, Circulation, and Flux
    • 15.3 Path Independence, Conservative Fields, and Potential Functions
    • 15.4 Green’s Theorem in the Plane
    • 15.5 Surfaces and Area
    • 15.6 Surface Integrals
    • 15.7 Stokes’ Theorem
    • 15.8 The Divergence Theorem and a Unified Theory
    • Questions to Guide Your Review
    • Practice Exercises
    • Additional and Advanced Exercises
    • Technology Application Projects
    16. First-Order Differential Equations
    • 16.1 Solutions, Slope Fields, and Euler’s Method
    • 16.1 Solutions, Slope Fields, and Euler’s Method
    • 16.2 First-Order Linear Equations
    • 16.3 Applications
    • 16.4 Graphical Solutions of Autonomous Equations
    • 16.5 Systems of Equations and Phase Planes
    • Questions to Guide Your Review
    • Practice Exercises
    • Additional and Advanced Exercises
    • Technology Application Projects
    17. Second-Order Differential Equations (online)
    • 17.1 Second-Order Linear Equations
    • 17.2 Nonhomogeneous Linear Equations
    • 17.3 Applications
    • 17.4 Euler Equations
    • 17.5 Power-Series Solutions
    18. Complex Functions (online)
    • 18.1 Complex Numbers
    • 18.2 Functions of a Complex Variable
    • 18.3 Derivatives
    • 18.4 The Cauchy-Riemann Equations
    • 18.5 Complex Power Series
    • 18.6 Some Complex Functions
    • 18.7 Conformal Maps
    • Questions to Guide Your Review
    • Additional and Advanced Exercises
    19. Fourier Series and Wavelets (online)
    • 19.1 Periodic Functions
    • 19.2 Summing Sines and Cosines
    • 19.3 Vectors and Approximation in Three and More Dimensions
    • 19.4 Approximation of Functions
    • 19.5 Advanced Topic: The Haar System and Wavelets
    • Questions to Guide Your Review
    • Additional and Advanced Exercises
    Appendix A
    • A.1 Real Numbers and the Real Line
    • A.2 Mathematical Induction
    • A.3 Lines, Circles, and Parabolas
    • A.4 Proofs of Limit Theorems
    • A.5 Commonly Occurring Limits
    • A.6 Theory of the Real Numbers
    • A.7 Probability
    • A.8 The Distributive Law for Vector Cross Products
    • A.9 The Mixed Derivative Theorem and the Increment Theorem
    Appendix B (online)
    • B.1 Determinants
    • B.2 Extreme Values and Saddle Points for Functions of More than Two Variables
    • B.3 The Method of Gradient Descent
    Answers to Odd-Numbered Exercises Applications Index Subject Index Credits A Brief Table of Integrals

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account