Description
Book SynopsisRecent advances in technology have led to the unprecedented accuracy in measurements of endogenous electric fields around sites of tissue disruption. State-of-the-art molecular approaches demonstrate the role of bioelectricity in the directionality and speed of cell migration, proliferation, apoptosis, differentiation, and orientation. New information indicates that electric fields play a role in initiating and coordinating complex regenerative responses in development and wound repair and that they may also have a part in cancer progression and metastasis.
Compiling current research in this rapidly expanding field, Physiology of Bioelectricity in Development, Tissue Regeneration, and Cancer highlights relevant, cutting-edge topics poised to drive the next generation of medical breakthroughs. Chapters consider methods for detecting endogenous electric field gradients and studying applied electric fields in the lab. The book addresses bioelectricityâs roles in
Table of Contents
Measuring Endogenous Electric Fields. Investigation Systems to Study the Biological Effects of Weak Physiological Electric Fields. Endogenous Bioelectric Signals as Morphogenetic Controls of Development, Regeneration, and Neoplasm. Stem Cell Physiological Responses to Noninvasive Electrical Stimulation. Electrical Signals Control Corneal Epithelial Cell Physiology and Wound Repair. Physiological Electric Fields Can Direct Keratinocyte Migration and Promote Healing in Chronic Wounds. Electrical Control of Angiogenesis. Inflammatory Cell Electrotaxis. Effects of DC Electric Fields on Migration of Cells of the Musculoskeletal System. Neuronal Growth Cone Guidance by Physiological DC Electric Fields. Can Applied Voltages Be Used to Produce Spinal Cord Regeneration and Recovery in Humans? Bioelectricty of Cancer: Voltage-Gated Ion Channels and Direct-Current Electric Fields.