Description

Book Synopsis
The forces of natural selection have been a primary driver in the evolution of adaptive animal behaviours. On the one hand animals must evade predation in order to survive and pass on their genes; on other hand, and for the same underlying reasons, animals must also be capable of successfully capturing prey.

Table of Contents

General Introduction xi

What This Book Is About xiii

How this book is organised xv

Who this book is for xvi

Acknowledgements xvi

References xvii

1 Vision 2

1.1 The electromagnetic spectrum 3

1.2 Eyes: acuity and sensitivity 5

1.2.1 Foveae 6

1.3 Feature recognition and releasing behaviour 8

1.4 Prey capture in toads 9

1.4.1 Attack or avoid: ‘worms’ and ‘anti‐worms’ 9

1.4.2 Retinal processing 11

1.4.3 Feature detector neurons 12

1.4.4 Modulation and plasticity 14

1.4.5 Toad prey capture: the insects fight back 15

1.5 Beyond the visible spectrum 16

1.5.1 Pit organs 16

1.5.2 Thermotransduction 20

1.5.3 Brain processing and cross‐modal integration 21

1.5.4 Behaviour 22

1.5.5 Infrared defence signals 25

1.6 Aerial predators: dragonfly vision 27

1.6.1 Dragonfly eyes 27

1.6.2 Aerial pursuit 28

1.6.3 Predictive foveation 29

1.6.4 Reactive steering: STMDs and TSDNs 30

1.7 Summary 31

Abbreviations 32

References 32

2 Olfaction 36

2.1 Mechanisms of olfaction 38

2.1.1 Detection and specificity 38

2.1.2 Olfactory sub‐systems 40

2.1.3 Brain processing 41

2.2 Olfactory tracking and localisation 41

2.3 Pheromones and kairomones 45

2.3.1 Alarm pheromones 45

2.3.2 Predator odours 46

2.3.3 Dual purpose signals: the MUP family 47

2.3.4 Parasites: when kairomones go bad! 49

2.4 Summary 50

Abbreviations 51

References 51

3 Owl Hearing 54

3.1 Timing and intensity 56

3.2 Owl sound localisation mechanisms 58

3.3 Anatomy 60

3.4 Neural computation 61

3.4.1 The auditory map 62

3.4.2 Early stage processing 66

3.4.3 ITD processing 69

3.4.4 IID processing 76

3.5 Combining ITD and IID specificity in the inferior colliculus 77

3.6 Audio‐visual integration and experience‐dependent tuning of the auditory map 78

3.6.1 Audio‐visual discrepancy can re‐map the ICC‐ICX connections 80

3.6.2 Motor adaptation 82

3.6.3 Age and experience matter! 82

3.6.4 Cellular mechanisms of re‐mapping 82

3.7 Summary 83

Abbreviations 84

References 85

4 Mammalian Hearing 88

4.1 Spectral cues 90

4.1.1 Neural processing of spectral cues 90

4.2 Binaural processing 92

4.2.1 IID processing 93

4.2.2 ITD processing 94

4.2.3 Calyx of Held 99

4.3 Do mammals have a space map like owls? 100

4.4 Comparative studies in mammals 101

4.5 Summary 102

4.5.1 Caveats 102

Abbreviations 102

References 103

5 The Biosonar System of Bats 106

5.1 Bat echolocation 107

5.1.1 Why ultrasound? 108

5.1.2 Range limits 109

5.2 The sound production system 109

5.2.1 Types of sound: CF and FM pulses 110

5.2.2 Echolocation in predation: a three‐phase attack strategy 112

5.2.3 Duty cycle and pulse‐echo overlap 113

5.3 The sound reception system 114

5.3.1 Bats have big ears 114

5.3.2 Peripheral specialisations: automatic gain control and acoustic fovea 115

5.4 Eco‐physiology: different calls for different situations 116

5.4.1 Target discovery 117

5.4.2 Target range and texture 118

5.4.3 Target location 119

5.4.4 Target velocity: the Doppler shift 119

5.4.5 Target identity: flutter detection 121

5.4.6 Jamming avoidance response 123

5.4.7 Food competition and intentional jamming 123

5.5 Brain mechanisms of echo detection 124

5.5.1 The auditory cortex 125

5.5.2 Range and size analysis: the FM‐FM area 125

5.5.3 Velocity analysis: the CF‐CF area 128

5.5.4 Fine frequency analysis: the DSCF area 130

5.6 Evolutionary considerations 131

5.7 The insects fight back 132

5.7.1 Moth ears and evasive action 132

5.7.2 Bad taste 133

5.7.3 Shouting back 134

5.8 Final thoughts 135

5.9 Summary 136

Abbreviations 137

References 137

6 Electrolocation and Electric Organs 140

6.1 Passive electrolocation 142

6.1.1 Ampullary electroreceptors 142

6.1.2 Prey localisation 145

6.1.3 Mammalian electrolocation 146

6.2 Electric fish 148

6.3 Strongly electric fish 151

6.3.1 Freshwater fish: the electric eel 151

6.3.2 Marine fish: The electric ray 156

6.3.3 Avoiding self‐electrocution 158

6.4 Active electrolocation 158

6.4.1 Weakly electric fish 158

6.4.2 Tuberous electroreceptors 161

6.4.3 Brain maps for active electrolocation 163

6.4.4 Avoiding detection mostly 164

6.4.5 Frequency niches 166

6.4.6 The jamming avoidance response 167

6.5 Summary 174

Abbreviations 175

References 175

7 The Crayfish Escape Tail‐Flip 178

7.1 Invertebrate vs. vertebrate nervous systems 179

7.2 Tail‐flip form and function 180

7.3 Command neurons 182

7.4 Motor output 184

7.4.1 Directional control 184

7.4.2 Rectifying electrical synapses 186

7.4.3 Depolarising inhibition 188

7.4.4 FF drive and the segmental giant neuron 189

7.4.5 Limb activity during GF tail‐flips 189

7.4.6 Tail extension 190

7.4.7 Non‐giant tail‐flips 190

7.5 Activation of GF tail‐flips 191

7.5.1 Coincidence detection 193

7.5.2 Habituation and prevention of self‐stimulation 195

7.6 Modulation and neuroeconomics 196

7.6.1 Mechanisms of modulation 197

7.6.2 Serotonin modulation 198

7.7 Social status, serotonin and the crayfish tail‐flip 198

7.7.1 Social status effects on tail‐flip threshold 199

7.7.2 Serotonin effects on tail‐flip threshold depend on social status 200

7.8 Evolution and adaptations of the tail‐flip circuitry 202

7.8.1 Penaeus: a unique myelination mechanism gives ultra‐rapid conduction 205

7.9 Summary 208

Abbreviations 208

References 209

8 Fish Escape: the Mauthner System 212

8.1 Fish ears and the lateral line 214

8.1.1 Directional sensitivity 215

8.2 Mauthner cells 215

8.2.1 Biophysical properties 217

8.3 Sensory inputs to M‐cells 218

8.3.1 Feedforward inhibition and threshold setting 220

8.3.2 PHP neurons: electrical inhibition 220

8.4 Directional selectivity and the lateral line 222

8.4.1 Obstacle avoidance 223

8.5 M‐cell output 223

8.5.1 Feedback electrical inhibition: collateral PHP neurons 223

8.5.2 Spinal motor output 224

8.5.3 Spinal inhibitory interneurons: CoLos 224

8.6 The Mauthner system: command, control and flexibility 226

8.7 Stage 2 and beyond 230

8.8 Social status and escape threshold 230

8.9 Adaptations and modifications of the M‐circuit 233

8.10 Predators fight back: the amazing tentacled snake 235

8.11 Summary 239

Abbreviations 239

References 240

9 The Mammalian Startle Response 244

9.1 Pathologies 246

9.2 Neural circuitry of the mammalian startle response 248

9.3 Modulation of startle 250

9.4 Summary 250

Abbreviations 251

References 251

10 The Ballistic Attack of Archer Fish 254

10.1 The water pistol 255

10.2 Perceptual problems and solutions 257

10.3 Learning to shoot 260

10.4 Prey retrieval by archer fish 261

10.4.1 Computing the landing point 262

10.4.2 Orientation 263

10.4.3 Dash to the target 264

10.5 Summary 264

References 265

11 Catapults for Attack and Escape 266

11.1 The bow and arrow 268

11.2 Catapults require multi‐stage motor programmes 269

11.3 Grasshopper jumping 270

11.3.1 Biomechanics 270

11.3.2 The behaviour 270

11.3.3 The hind legs 271

11.3.4 The motor programme 273

11.3.5 Directional control 279

11.3.6 Evolution of the grasshopper strategy 279

11.4 Froghoppers: the champion insect jumpers 280

11.4.1 Ratchet locks 282

11.4.2 Synchronisation 282

11.5 Mantis shrimps 284

11.5.1 Mantis shrimp catapults 285

11.5.2 Cavitation bubbles 287

11.6 Snapping (pistol) shrimps 288

11.7 Multi‐function mouthparts: the trap‐jaw ant 291

11.8 Prey capture with prehensile tongues 293

11.8.1 The chameleon tongue: sliding springs and supercontracting muscles 293

11.8.2 Salamander tongue projection 297

11.9 Temperature independence of catapults 300

11.10 Summary 300

Abbreviations 301

References 301

12 Molluscan Defence and Escape Systems 304

12.1 Squid jet propulsion 306

12.1.1 Biomechanics 306

12.1.2 Neural circuitry 307

12.1.3 Jetting behaviour 311

12.2 Inking 312

12.2.1 Neuroecology of inking 314

12.2.2 Neural circuitry of inking 315

12.3 Cephalopod colour and shape control 316

12.3.1 Chromatophores 317

12.3.2 Iridophores 319

12.3.3 Leucophores 321

12.3.4 Photophores 321

12.3.5 Body shape and dermal papillae 322

12.4 Summary 323

Abbreviations 323

References 323

13 Neurotoxins for Attack and Defence 326

13.1 Cone snails 328

13.1.1 The biology of cone snail envenomation 329

13.1.2 Conopeptides 333

13.1.3 The billion dollar mollusc 340

13.1.4 ‘Rapid’ conch escape 341

13.2 The neuroethology of ‘zombie’ cockroaches 343

13.2.1 Sensory mechanisms of stinger precision 344

13.2.2 Transient paralysis 345

13.2.3 Intense grooming 346

13.2.4 Docile hypokinesia 346

13.3 Venom resistance 347

13.3.1 Targeting pain pathways 350

13.3.2 From pain to analgesia 350

13.4 Summary 352

Abbreviations 352

References 352

14 Concluding Thoughts 356

14.1 The need for speed 358

14.2 Safety in numbers 360

14.3 The unbalancing influences of humankind 361

References 363

Index 364

The Neuroethology of Predation and Escape

Product form

£44.96

Includes FREE delivery

RRP £49.95 – you save £4.99 (9%)

Order before 4pm today for delivery by Sat 27 Dec 2025.

A Paperback / softback by Keith T. Sillar, Laurence D. Picton, William J. Heitler

15 in stock


    View other formats and editions of The Neuroethology of Predation and Escape by Keith T. Sillar

    Publisher: John Wiley and Sons Ltd
    Publication Date: 06/05/2016
    ISBN13: 9780470972236, 978-0470972236
    ISBN10: 0470972238

    Description

    Book Synopsis
    The forces of natural selection have been a primary driver in the evolution of adaptive animal behaviours. On the one hand animals must evade predation in order to survive and pass on their genes; on other hand, and for the same underlying reasons, animals must also be capable of successfully capturing prey.

    Table of Contents

    General Introduction xi

    What This Book Is About xiii

    How this book is organised xv

    Who this book is for xvi

    Acknowledgements xvi

    References xvii

    1 Vision 2

    1.1 The electromagnetic spectrum 3

    1.2 Eyes: acuity and sensitivity 5

    1.2.1 Foveae 6

    1.3 Feature recognition and releasing behaviour 8

    1.4 Prey capture in toads 9

    1.4.1 Attack or avoid: ‘worms’ and ‘anti‐worms’ 9

    1.4.2 Retinal processing 11

    1.4.3 Feature detector neurons 12

    1.4.4 Modulation and plasticity 14

    1.4.5 Toad prey capture: the insects fight back 15

    1.5 Beyond the visible spectrum 16

    1.5.1 Pit organs 16

    1.5.2 Thermotransduction 20

    1.5.3 Brain processing and cross‐modal integration 21

    1.5.4 Behaviour 22

    1.5.5 Infrared defence signals 25

    1.6 Aerial predators: dragonfly vision 27

    1.6.1 Dragonfly eyes 27

    1.6.2 Aerial pursuit 28

    1.6.3 Predictive foveation 29

    1.6.4 Reactive steering: STMDs and TSDNs 30

    1.7 Summary 31

    Abbreviations 32

    References 32

    2 Olfaction 36

    2.1 Mechanisms of olfaction 38

    2.1.1 Detection and specificity 38

    2.1.2 Olfactory sub‐systems 40

    2.1.3 Brain processing 41

    2.2 Olfactory tracking and localisation 41

    2.3 Pheromones and kairomones 45

    2.3.1 Alarm pheromones 45

    2.3.2 Predator odours 46

    2.3.3 Dual purpose signals: the MUP family 47

    2.3.4 Parasites: when kairomones go bad! 49

    2.4 Summary 50

    Abbreviations 51

    References 51

    3 Owl Hearing 54

    3.1 Timing and intensity 56

    3.2 Owl sound localisation mechanisms 58

    3.3 Anatomy 60

    3.4 Neural computation 61

    3.4.1 The auditory map 62

    3.4.2 Early stage processing 66

    3.4.3 ITD processing 69

    3.4.4 IID processing 76

    3.5 Combining ITD and IID specificity in the inferior colliculus 77

    3.6 Audio‐visual integration and experience‐dependent tuning of the auditory map 78

    3.6.1 Audio‐visual discrepancy can re‐map the ICC‐ICX connections 80

    3.6.2 Motor adaptation 82

    3.6.3 Age and experience matter! 82

    3.6.4 Cellular mechanisms of re‐mapping 82

    3.7 Summary 83

    Abbreviations 84

    References 85

    4 Mammalian Hearing 88

    4.1 Spectral cues 90

    4.1.1 Neural processing of spectral cues 90

    4.2 Binaural processing 92

    4.2.1 IID processing 93

    4.2.2 ITD processing 94

    4.2.3 Calyx of Held 99

    4.3 Do mammals have a space map like owls? 100

    4.4 Comparative studies in mammals 101

    4.5 Summary 102

    4.5.1 Caveats 102

    Abbreviations 102

    References 103

    5 The Biosonar System of Bats 106

    5.1 Bat echolocation 107

    5.1.1 Why ultrasound? 108

    5.1.2 Range limits 109

    5.2 The sound production system 109

    5.2.1 Types of sound: CF and FM pulses 110

    5.2.2 Echolocation in predation: a three‐phase attack strategy 112

    5.2.3 Duty cycle and pulse‐echo overlap 113

    5.3 The sound reception system 114

    5.3.1 Bats have big ears 114

    5.3.2 Peripheral specialisations: automatic gain control and acoustic fovea 115

    5.4 Eco‐physiology: different calls for different situations 116

    5.4.1 Target discovery 117

    5.4.2 Target range and texture 118

    5.4.3 Target location 119

    5.4.4 Target velocity: the Doppler shift 119

    5.4.5 Target identity: flutter detection 121

    5.4.6 Jamming avoidance response 123

    5.4.7 Food competition and intentional jamming 123

    5.5 Brain mechanisms of echo detection 124

    5.5.1 The auditory cortex 125

    5.5.2 Range and size analysis: the FM‐FM area 125

    5.5.3 Velocity analysis: the CF‐CF area 128

    5.5.4 Fine frequency analysis: the DSCF area 130

    5.6 Evolutionary considerations 131

    5.7 The insects fight back 132

    5.7.1 Moth ears and evasive action 132

    5.7.2 Bad taste 133

    5.7.3 Shouting back 134

    5.8 Final thoughts 135

    5.9 Summary 136

    Abbreviations 137

    References 137

    6 Electrolocation and Electric Organs 140

    6.1 Passive electrolocation 142

    6.1.1 Ampullary electroreceptors 142

    6.1.2 Prey localisation 145

    6.1.3 Mammalian electrolocation 146

    6.2 Electric fish 148

    6.3 Strongly electric fish 151

    6.3.1 Freshwater fish: the electric eel 151

    6.3.2 Marine fish: The electric ray 156

    6.3.3 Avoiding self‐electrocution 158

    6.4 Active electrolocation 158

    6.4.1 Weakly electric fish 158

    6.4.2 Tuberous electroreceptors 161

    6.4.3 Brain maps for active electrolocation 163

    6.4.4 Avoiding detection mostly 164

    6.4.5 Frequency niches 166

    6.4.6 The jamming avoidance response 167

    6.5 Summary 174

    Abbreviations 175

    References 175

    7 The Crayfish Escape Tail‐Flip 178

    7.1 Invertebrate vs. vertebrate nervous systems 179

    7.2 Tail‐flip form and function 180

    7.3 Command neurons 182

    7.4 Motor output 184

    7.4.1 Directional control 184

    7.4.2 Rectifying electrical synapses 186

    7.4.3 Depolarising inhibition 188

    7.4.4 FF drive and the segmental giant neuron 189

    7.4.5 Limb activity during GF tail‐flips 189

    7.4.6 Tail extension 190

    7.4.7 Non‐giant tail‐flips 190

    7.5 Activation of GF tail‐flips 191

    7.5.1 Coincidence detection 193

    7.5.2 Habituation and prevention of self‐stimulation 195

    7.6 Modulation and neuroeconomics 196

    7.6.1 Mechanisms of modulation 197

    7.6.2 Serotonin modulation 198

    7.7 Social status, serotonin and the crayfish tail‐flip 198

    7.7.1 Social status effects on tail‐flip threshold 199

    7.7.2 Serotonin effects on tail‐flip threshold depend on social status 200

    7.8 Evolution and adaptations of the tail‐flip circuitry 202

    7.8.1 Penaeus: a unique myelination mechanism gives ultra‐rapid conduction 205

    7.9 Summary 208

    Abbreviations 208

    References 209

    8 Fish Escape: the Mauthner System 212

    8.1 Fish ears and the lateral line 214

    8.1.1 Directional sensitivity 215

    8.2 Mauthner cells 215

    8.2.1 Biophysical properties 217

    8.3 Sensory inputs to M‐cells 218

    8.3.1 Feedforward inhibition and threshold setting 220

    8.3.2 PHP neurons: electrical inhibition 220

    8.4 Directional selectivity and the lateral line 222

    8.4.1 Obstacle avoidance 223

    8.5 M‐cell output 223

    8.5.1 Feedback electrical inhibition: collateral PHP neurons 223

    8.5.2 Spinal motor output 224

    8.5.3 Spinal inhibitory interneurons: CoLos 224

    8.6 The Mauthner system: command, control and flexibility 226

    8.7 Stage 2 and beyond 230

    8.8 Social status and escape threshold 230

    8.9 Adaptations and modifications of the M‐circuit 233

    8.10 Predators fight back: the amazing tentacled snake 235

    8.11 Summary 239

    Abbreviations 239

    References 240

    9 The Mammalian Startle Response 244

    9.1 Pathologies 246

    9.2 Neural circuitry of the mammalian startle response 248

    9.3 Modulation of startle 250

    9.4 Summary 250

    Abbreviations 251

    References 251

    10 The Ballistic Attack of Archer Fish 254

    10.1 The water pistol 255

    10.2 Perceptual problems and solutions 257

    10.3 Learning to shoot 260

    10.4 Prey retrieval by archer fish 261

    10.4.1 Computing the landing point 262

    10.4.2 Orientation 263

    10.4.3 Dash to the target 264

    10.5 Summary 264

    References 265

    11 Catapults for Attack and Escape 266

    11.1 The bow and arrow 268

    11.2 Catapults require multi‐stage motor programmes 269

    11.3 Grasshopper jumping 270

    11.3.1 Biomechanics 270

    11.3.2 The behaviour 270

    11.3.3 The hind legs 271

    11.3.4 The motor programme 273

    11.3.5 Directional control 279

    11.3.6 Evolution of the grasshopper strategy 279

    11.4 Froghoppers: the champion insect jumpers 280

    11.4.1 Ratchet locks 282

    11.4.2 Synchronisation 282

    11.5 Mantis shrimps 284

    11.5.1 Mantis shrimp catapults 285

    11.5.2 Cavitation bubbles 287

    11.6 Snapping (pistol) shrimps 288

    11.7 Multi‐function mouthparts: the trap‐jaw ant 291

    11.8 Prey capture with prehensile tongues 293

    11.8.1 The chameleon tongue: sliding springs and supercontracting muscles 293

    11.8.2 Salamander tongue projection 297

    11.9 Temperature independence of catapults 300

    11.10 Summary 300

    Abbreviations 301

    References 301

    12 Molluscan Defence and Escape Systems 304

    12.1 Squid jet propulsion 306

    12.1.1 Biomechanics 306

    12.1.2 Neural circuitry 307

    12.1.3 Jetting behaviour 311

    12.2 Inking 312

    12.2.1 Neuroecology of inking 314

    12.2.2 Neural circuitry of inking 315

    12.3 Cephalopod colour and shape control 316

    12.3.1 Chromatophores 317

    12.3.2 Iridophores 319

    12.3.3 Leucophores 321

    12.3.4 Photophores 321

    12.3.5 Body shape and dermal papillae 322

    12.4 Summary 323

    Abbreviations 323

    References 323

    13 Neurotoxins for Attack and Defence 326

    13.1 Cone snails 328

    13.1.1 The biology of cone snail envenomation 329

    13.1.2 Conopeptides 333

    13.1.3 The billion dollar mollusc 340

    13.1.4 ‘Rapid’ conch escape 341

    13.2 The neuroethology of ‘zombie’ cockroaches 343

    13.2.1 Sensory mechanisms of stinger precision 344

    13.2.2 Transient paralysis 345

    13.2.3 Intense grooming 346

    13.2.4 Docile hypokinesia 346

    13.3 Venom resistance 347

    13.3.1 Targeting pain pathways 350

    13.3.2 From pain to analgesia 350

    13.4 Summary 352

    Abbreviations 352

    References 352

    14 Concluding Thoughts 356

    14.1 The need for speed 358

    14.2 Safety in numbers 360

    14.3 The unbalancing influences of humankind 361

    References 363

    Index 364

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account