Description
Book SynopsisIt can be used for a course that provides an introduction to basic functional analysis, approximation theory, and numerical analysis, while building upon and applying basic techniques of real variable theory.
Trade ReviewSecond Edition
S.C. Brenner and L.R. Scott
The Mathematical Theory of Finite Element Methods
"[This is] a well-written book. A great deal of material is covered, and students who have taken the trouble to master at least some of the advanced material in the later chapters would be well placed to embark on research in the area."
ZENTRALBLATT MATH
From the reviews of the third edition:
"An excelent survey of the deep mathematical roots of finite element methods as well as of some of the newest and most formal results concerning these methods. … The approach remains very clear and precise … . A significant number of examples and exercises improve considerably the accessability of the text. The authors also point out different ways the book could be used in various courses. … valuable reference and source for researchers (mainly mathematicians) in the topic." (Calin Ioan Gheorghiu, Zentralblatt MATH, Vol. 1135 (13), 2008)
Table of ContentsPreface(3rdEd).- Preface(2ndEd).- Preface(1stED).- Basic Concepts.- Sobolev Spaces.- Variational Formulation of Elliptic Boundary Value Problems.- The Construction of a Finite Element of Space.- Polynomial Approximation Theory in Sobolev Spaces.- n-Dimensional Variational Problems.- Finite Element Multigrid Methods.- Additive Schwarz Preconditioners.- Max-norm Estimates.- Adaptive Meshes.- Variational Crimes.- Applications to Planar Elasticity.- Mixed Methods.- Iterative Techniques for Mixed Methods.- Applications of Operator-Interpolation Theory.- References.- Index.