Description

Book Synopsis

This book provides an introduction to real analysis, a fundamental topic that is an essential requirement in the study of mathematics. It deals with the concepts of infinity and limits, which are the cornerstones in the development of calculus.

Beginning with some basic proof techniques and the notions of sets and functions, the book rigorously constructs the real numbers and their related structures from the natural numbers. During this construction, the readers will encounter the notions of infinity, limits, real sequences, and real series. These concepts are then formalised and focused on as stand-alone objects. Finally, they are expanded to limits, sequences, and series of more general objects such as real-valued functions. Once the fundamental tools of the trade have been established, the readers are led into the classical study of calculus (continuity, differentiation, and Riemann integration) from first principles. The book concludes with an introduction to the study of measures and how one can construct the Lebesgue integral as an extension of the Riemann integral.

This textbook is aimed at undergraduate students in mathematics. As its title suggests, it covers a large amount of material, which can be taught in around three semesters. Many remarks and examples help to motivate and provide intuition for the abstract theoretical concepts discussed. In addition, more than 600 exercises are included in the book, some of which will lead the readers to more advanced topics and could be suitable for independent study projects. Since the book is fully self-contained, it is also ideal for self-study.



Table of Contents

Preface.- 1. Logic and Sets.- 2. Integers.- 3. Construction of the Real Numbers.- 4. The Real Numbers.- 5. Real Sequences.- 6. Some Applications of Real Sequences.- 7. Real Series.- 8. Additional Topics in Real Series.- 9. Functions and Limits.- 10. Continuity.- 11. Function Sequences and Series.- 12. Power Series.- 13. Differentiation.- 14. Some Applications of Differentiation.- 15. Riemann and Darboux Integration.- 16. The Fundamental Theorem of Calculus.- 17. Taylor and MacLaurin Series.- 18. Introduction to Measure Theory.- 19. Lebesgue Integration.- 20. Double Integrals.- Solutions to the Exercises.- Bibliography.- Index.

The Big Book of Real Analysis: From Numbers to

Product form

£80.99

Includes FREE delivery

RRP £89.99 – you save £9.00 (10%)

Order before 4pm today for delivery by Fri 19 Dec 2025.

A Hardback by Syafiq Johar

1 in stock


    View other formats and editions of The Big Book of Real Analysis: From Numbers to by Syafiq Johar

    Publisher: Springer International Publishing AG
    Publication Date: 05/01/2024
    ISBN13: 9783031308314, 978-3031308314
    ISBN10: 303130831X

    Description

    Book Synopsis

    This book provides an introduction to real analysis, a fundamental topic that is an essential requirement in the study of mathematics. It deals with the concepts of infinity and limits, which are the cornerstones in the development of calculus.

    Beginning with some basic proof techniques and the notions of sets and functions, the book rigorously constructs the real numbers and their related structures from the natural numbers. During this construction, the readers will encounter the notions of infinity, limits, real sequences, and real series. These concepts are then formalised and focused on as stand-alone objects. Finally, they are expanded to limits, sequences, and series of more general objects such as real-valued functions. Once the fundamental tools of the trade have been established, the readers are led into the classical study of calculus (continuity, differentiation, and Riemann integration) from first principles. The book concludes with an introduction to the study of measures and how one can construct the Lebesgue integral as an extension of the Riemann integral.

    This textbook is aimed at undergraduate students in mathematics. As its title suggests, it covers a large amount of material, which can be taught in around three semesters. Many remarks and examples help to motivate and provide intuition for the abstract theoretical concepts discussed. In addition, more than 600 exercises are included in the book, some of which will lead the readers to more advanced topics and could be suitable for independent study projects. Since the book is fully self-contained, it is also ideal for self-study.



    Table of Contents

    Preface.- 1. Logic and Sets.- 2. Integers.- 3. Construction of the Real Numbers.- 4. The Real Numbers.- 5. Real Sequences.- 6. Some Applications of Real Sequences.- 7. Real Series.- 8. Additional Topics in Real Series.- 9. Functions and Limits.- 10. Continuity.- 11. Function Sequences and Series.- 12. Power Series.- 13. Differentiation.- 14. Some Applications of Differentiation.- 15. Riemann and Darboux Integration.- 16. The Fundamental Theorem of Calculus.- 17. Taylor and MacLaurin Series.- 18. Introduction to Measure Theory.- 19. Lebesgue Integration.- 20. Double Integrals.- Solutions to the Exercises.- Bibliography.- Index.

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account