Description

Book Synopsis
This book is a new edition of Tensors and Manifolds: With Applications to Mechanics and Relativity which was published in 1992. It is based on courses taken by advanced undergraduate and beginning graduate students in mathematics and physics, giving an introduction to the expanse of modern mathematics and its application in modern physics. It aims to fill the gap between the basic courses and the highly technical and specialised courses which both mathematics and physics students require in their advanced training, while simultaneously trying to promote, at an early stage, a better appreciation and understanding of each other''s discipline. The book sets forth the basic principles of tensors and manifolds, describing how the mathematics underlies elegant geometrical models of classical mechanics, relativity and elementary particle physics. The existing material from the first edition has been reworked and extended in some sections to provide extra clarity, as well as additional problem

Trade Review
Review from previous edition Clearly written and self-contained and, in particular, the author has succeeded in combining mathematical rigor with a certain degree of informality in a satisfactory way. As such, this work will certainly be appreciated by a wide audience. * Mathematical Reviews, August 1993 *

Table of Contents
1. Vector spaces ; 2. Multilinear mappings and dual spaces ; 3. Tensor product spaces ; 4. Tensors ; 5. Symmetric and skew-symmetric tensors ; 6. Exterior (Grassmann) algebra ; 7. The tangent map of real cartesian spaces ; 8. Topological spaces ; 9. Differentiable manifolds ; 10. Submanifolds ; 11. Vector fields, 1-forms and other tensor fields ; 12. Differentiation and integration of differential forms ; 13. The flow and the Lie derivative of a vector field ; 14. Integrability conditions for distributions and for pfaffian systems ; 15. Pseudo-Riemannian manifolds ; 16. Connection 1-forms ; 17. Connection on manifolds ; 18. Mechanics ; 19. Additional topics in mechanics ; 20. A spacetime ; 21. Some physics on Minkowski spacetime ; 22. Einstein spacetimes ; 23. Spacetimes near an isolated star ; 24. Nonempty spacetimes ; 25. Lie groups ; 26. Fiber bundles ; 27. Connections on fiber bundles ; 28. Gauge theory

Tensors and Manifolds

Product form

£118.75

Includes FREE delivery

RRP £125.00 – you save £6.25 (5%)

Order before 4pm today for delivery by Thu 18 Dec 2025.

A Hardback by Robert H. Wasserman

15 in stock


    View other formats and editions of Tensors and Manifolds by Robert H. Wasserman

    Publisher: Oxford University Press
    Publication Date: 5/13/2004 12:00:00 AM
    ISBN13: 9780198510598, 978-0198510598
    ISBN10: 0198510594

    Description

    Book Synopsis
    This book is a new edition of Tensors and Manifolds: With Applications to Mechanics and Relativity which was published in 1992. It is based on courses taken by advanced undergraduate and beginning graduate students in mathematics and physics, giving an introduction to the expanse of modern mathematics and its application in modern physics. It aims to fill the gap between the basic courses and the highly technical and specialised courses which both mathematics and physics students require in their advanced training, while simultaneously trying to promote, at an early stage, a better appreciation and understanding of each other''s discipline. The book sets forth the basic principles of tensors and manifolds, describing how the mathematics underlies elegant geometrical models of classical mechanics, relativity and elementary particle physics. The existing material from the first edition has been reworked and extended in some sections to provide extra clarity, as well as additional problem

    Trade Review
    Review from previous edition Clearly written and self-contained and, in particular, the author has succeeded in combining mathematical rigor with a certain degree of informality in a satisfactory way. As such, this work will certainly be appreciated by a wide audience. * Mathematical Reviews, August 1993 *

    Table of Contents
    1. Vector spaces ; 2. Multilinear mappings and dual spaces ; 3. Tensor product spaces ; 4. Tensors ; 5. Symmetric and skew-symmetric tensors ; 6. Exterior (Grassmann) algebra ; 7. The tangent map of real cartesian spaces ; 8. Topological spaces ; 9. Differentiable manifolds ; 10. Submanifolds ; 11. Vector fields, 1-forms and other tensor fields ; 12. Differentiation and integration of differential forms ; 13. The flow and the Lie derivative of a vector field ; 14. Integrability conditions for distributions and for pfaffian systems ; 15. Pseudo-Riemannian manifolds ; 16. Connection 1-forms ; 17. Connection on manifolds ; 18. Mechanics ; 19. Additional topics in mechanics ; 20. A spacetime ; 21. Some physics on Minkowski spacetime ; 22. Einstein spacetimes ; 23. Spacetimes near an isolated star ; 24. Nonempty spacetimes ; 25. Lie groups ; 26. Fiber bundles ; 27. Connections on fiber bundles ; 28. Gauge theory

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account