Description

Book Synopsis
Discrete event systems (DES) have become pervasive in our daily lives. Examples include (but are not restricted to) manufacturing and supply chains, transportation, healthcare, call centers, and financial engineering. However, due to their complexities that often involve millions or even billions of events with many variables and constraints, modeling these stochastic simulations has long been a “hard nut to crack”. The advance in available computer technology, especially of cluster and cloud computing, has paved the way for the realization of a number of stochastic simulation optimization for complex discrete event systems. This book will introduce two important techniques initially proposed and developed by Professor Y C Ho and his team; namely perturbation analysis and ordinal optimization for stochastic simulation optimization, and present the state-of-the-art technology, and their future research directions.

Table of Contents
Part I: Perturbation Analysis: IPA Calculus for Hybrid Systems; Smoothed Perturbation Analysis: A Retrospective and Prospective Look; Perturbation Analysis and Variance Reduction in Monte Carlo Simulation; Adjoints and Averaging; Infinitesimal Perturbation Analysis in On-Line Optimization; Simulation-based Optimization of Failure-Prone Continuous Flow Lines; Perturbation Analysis, Dynamic Programming, and Beyond; Part II: Ordinal Optimization : Fundamentals of Ordinal Optimization; Optimal Computing Budget Allocation; Nested Partitions; Applications of Ordinal Optimization.

Stochastic Simulation Optimization For Discrete

Product form

£76.95

Includes FREE delivery

RRP £81.00 – you save £4.05 (5%)

Order before 4pm today for delivery by Tue 23 Dec 2025.

A Hardback by Chun-hung Chen, Qing-shan Jia, Loo Hay Lee

Out of stock


    View other formats and editions of Stochastic Simulation Optimization For Discrete by Chun-hung Chen

    Publisher: World Scientific Publishing Co Pte Ltd
    Publication Date: 28/08/2013
    ISBN13: 9789814513005, 978-9814513005
    ISBN10: 9814513008

    Description

    Book Synopsis
    Discrete event systems (DES) have become pervasive in our daily lives. Examples include (but are not restricted to) manufacturing and supply chains, transportation, healthcare, call centers, and financial engineering. However, due to their complexities that often involve millions or even billions of events with many variables and constraints, modeling these stochastic simulations has long been a “hard nut to crack”. The advance in available computer technology, especially of cluster and cloud computing, has paved the way for the realization of a number of stochastic simulation optimization for complex discrete event systems. This book will introduce two important techniques initially proposed and developed by Professor Y C Ho and his team; namely perturbation analysis and ordinal optimization for stochastic simulation optimization, and present the state-of-the-art technology, and their future research directions.

    Table of Contents
    Part I: Perturbation Analysis: IPA Calculus for Hybrid Systems; Smoothed Perturbation Analysis: A Retrospective and Prospective Look; Perturbation Analysis and Variance Reduction in Monte Carlo Simulation; Adjoints and Averaging; Infinitesimal Perturbation Analysis in On-Line Optimization; Simulation-based Optimization of Failure-Prone Continuous Flow Lines; Perturbation Analysis, Dynamic Programming, and Beyond; Part II: Ordinal Optimization : Fundamentals of Ordinal Optimization; Optimal Computing Budget Allocation; Nested Partitions; Applications of Ordinal Optimization.

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account