Description

Book Synopsis
1 The Binomial No-Arbitrage Pricing Model.- 1.1 One-Period Binomial Model.- 1.2 Multiperiod Binomial Model.- 1.3 Computational Considerations.- 1.4 Summary.- 1.5 Notes.- 1.6 Exercises.- 2 Probability Theory on Coin Toss Space.- 2.1 Finite Probability Spaces.- 2.2 Random Variables, Distributions, and Expectations.- 2.3 Conditional Expectations.- 2.4 Martingales.- 2.5 Markov Processes.- 2.6 Summary.- 2.7 Notes.- 2.8 Exercises.- 3 State Prices.- 3.1 Change of Measure.- 3.2 Radon-Nikodým Derivative Process.- 3.3 Capital Asset Pricing Model.- 3.4 Summary.- 3.5 Notes.- 3.6 Exercises.- 4 American Derivative Securities.- 4.1 Introduction.- 4.2 Non-Path-Dependent American Derivatives.- 4.3 Stopping Times.- 4.4 General American Derivatives.- 4.5 American Call Options.- 4.6 Summary.- 4.7 Notes.- 4.8 Exercises.- 5 Random Walk.- 5.1 Introduction.- 5.2 First Passage Times.- 5.3 Reflection Principle.- 5.4 Perpetual American Put: An Example.- 5.5 Summary.- 5.6 Notes.- 5.7 Exercises.- 6 Interest-Rate-D

Table of Contents
1. The Binomial No-Arbitrage Pricing Model 1.1. One-Period Binomial Model 1.2. Multiperiod Binomial Model 1.3. Computational Considerations 1.4. Summary 1.5. Notes 1.6. Exercises 2. Probability Theory on Coin Toss Space 2.1. Finite Probability Spaces 2.2. Random Variables, Distributions, and Expectations 2.3. Conditional Expectations 2.4. Martingales 2.5. Markov Processes 2.6. Summary 2.7. Notes 2.8. Exercises 3. State Prices 3.1. Change of Measure 3.2. Radon-Nikod\'ym Derivative Process 3.3. Capital Asset Pricing Model 3.4. Summary 3.5. Notes 3.6. Exercises 4. American Derivative Securities 4.1. Introduction 4.2. Non-Path-Dependent American Derivatives 4.3. Stopping Times 4.4. General American Derivatives 4.5. American Call Options 4.6. Summary 4.7. Notes 4.8. Exercises 5. Random Walk 5.1. Introduction 5.2. First Passage Times 5.3. Reflection Principle 5.4. Perpetual American Put: An Example 5.5. Summary 5.6. Notes 5.7. Exercises 6. Interest-Rate-Dependent Assets 6.1. Introduction 6.2. Binomial Model for Interest Rates 6.3. Fixed-Income Derivatives 6.4. Forward Measures 6.5. Futures 6.6. Summary 6.7. Notes 6.8. Exercises Proof of Fundamental Properties of Conditional Expectations References Index

Stochastic Calculus for Finance I

Product form

£52.24

Includes FREE delivery

RRP £54.99 – you save £2.75 (5%)

Order before 4pm tomorrow for delivery by Sat 20 Dec 2025.

A Paperback / softback by Steven Shreve

15 in stock


    View other formats and editions of Stochastic Calculus for Finance I by Steven Shreve

    Publisher: Springer-Verlag New York Inc.
    Publication Date: 28/06/2005
    ISBN13: 9780387249681, 978-0387249681
    ISBN10: 0387249680

    Description

    Book Synopsis
    1 The Binomial No-Arbitrage Pricing Model.- 1.1 One-Period Binomial Model.- 1.2 Multiperiod Binomial Model.- 1.3 Computational Considerations.- 1.4 Summary.- 1.5 Notes.- 1.6 Exercises.- 2 Probability Theory on Coin Toss Space.- 2.1 Finite Probability Spaces.- 2.2 Random Variables, Distributions, and Expectations.- 2.3 Conditional Expectations.- 2.4 Martingales.- 2.5 Markov Processes.- 2.6 Summary.- 2.7 Notes.- 2.8 Exercises.- 3 State Prices.- 3.1 Change of Measure.- 3.2 Radon-Nikodým Derivative Process.- 3.3 Capital Asset Pricing Model.- 3.4 Summary.- 3.5 Notes.- 3.6 Exercises.- 4 American Derivative Securities.- 4.1 Introduction.- 4.2 Non-Path-Dependent American Derivatives.- 4.3 Stopping Times.- 4.4 General American Derivatives.- 4.5 American Call Options.- 4.6 Summary.- 4.7 Notes.- 4.8 Exercises.- 5 Random Walk.- 5.1 Introduction.- 5.2 First Passage Times.- 5.3 Reflection Principle.- 5.4 Perpetual American Put: An Example.- 5.5 Summary.- 5.6 Notes.- 5.7 Exercises.- 6 Interest-Rate-D

    Table of Contents
    1. The Binomial No-Arbitrage Pricing Model 1.1. One-Period Binomial Model 1.2. Multiperiod Binomial Model 1.3. Computational Considerations 1.4. Summary 1.5. Notes 1.6. Exercises 2. Probability Theory on Coin Toss Space 2.1. Finite Probability Spaces 2.2. Random Variables, Distributions, and Expectations 2.3. Conditional Expectations 2.4. Martingales 2.5. Markov Processes 2.6. Summary 2.7. Notes 2.8. Exercises 3. State Prices 3.1. Change of Measure 3.2. Radon-Nikod\'ym Derivative Process 3.3. Capital Asset Pricing Model 3.4. Summary 3.5. Notes 3.6. Exercises 4. American Derivative Securities 4.1. Introduction 4.2. Non-Path-Dependent American Derivatives 4.3. Stopping Times 4.4. General American Derivatives 4.5. American Call Options 4.6. Summary 4.7. Notes 4.8. Exercises 5. Random Walk 5.1. Introduction 5.2. First Passage Times 5.3. Reflection Principle 5.4. Perpetual American Put: An Example 5.5. Summary 5.6. Notes 5.7. Exercises 6. Interest-Rate-Dependent Assets 6.1. Introduction 6.2. Binomial Model for Interest Rates 6.3. Fixed-Income Derivatives 6.4. Forward Measures 6.5. Futures 6.6. Summary 6.7. Notes 6.8. Exercises Proof of Fundamental Properties of Conditional Expectations References Index

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account