Description

Book Synopsis

This book provides an undergraduate introduction to analysing data for data science, computer science, and quantitative social science students. It uniquely combines a hands-on approach to data analysis – supported by numerous real data examples and reusable [R] code – with a rigorous treatment of probability and statistical principles.

Where contemporary undergraduate textbooks in probability theory or statistics often miss applications and an introductory treatment of modern methods (bootstrapping, Bayes, etc.), and where applied data analysis books often miss a rigorous theoretical treatment, this book provides an accessible but thorough introduction into data analysis, using statistical methods combining the two viewpoints. The book further focuses on methods for dealing with large data-sets and streaming-data and hence provides a single-course introduction of statistical methods for data science.



Trade Review
“Having taught data analytics at the introductory graduate level, I welcome the authors’ textbook as an essential resource for training well-grounded entry-level data scientists. … A data scientist shall provide competent data science professional services to a client. … Training in both the theory and practice of data analytics is a requirement for such competence. The authors’ textbook definitely provides a valuable resource for such training.” (Harry J. Foxwell, Computing Reviews, July 7, 2022)

Table of Contents
1 A First Look at Data.- 2 Sampling Plans and Estimates.- 3 Probability Theory.- 4 Random Variables and Distributions.- 5 Estimation.- 6 Multiple Random Variables.- 7 Making Decisions in Uncertainty.- 8 Bayesian Statistics.

Statistics for Data Scientists: An Introduction

Product form

£35.99

Includes FREE delivery

RRP £39.99 – you save £4.00 (10%)

Order before 4pm tomorrow for delivery by Sat 10 Jan 2026.

A Paperback / softback by Maurits Kaptein, Edwin van den Heuvel

1 in stock


    View other formats and editions of Statistics for Data Scientists: An Introduction by Maurits Kaptein

    Publisher: Springer Nature Switzerland AG
    Publication Date: 03/02/2022
    ISBN13: 9783030105303, 978-3030105303
    ISBN10: 303010530X

    Description

    Book Synopsis

    This book provides an undergraduate introduction to analysing data for data science, computer science, and quantitative social science students. It uniquely combines a hands-on approach to data analysis – supported by numerous real data examples and reusable [R] code – with a rigorous treatment of probability and statistical principles.

    Where contemporary undergraduate textbooks in probability theory or statistics often miss applications and an introductory treatment of modern methods (bootstrapping, Bayes, etc.), and where applied data analysis books often miss a rigorous theoretical treatment, this book provides an accessible but thorough introduction into data analysis, using statistical methods combining the two viewpoints. The book further focuses on methods for dealing with large data-sets and streaming-data and hence provides a single-course introduction of statistical methods for data science.



    Trade Review
    “Having taught data analytics at the introductory graduate level, I welcome the authors’ textbook as an essential resource for training well-grounded entry-level data scientists. … A data scientist shall provide competent data science professional services to a client. … Training in both the theory and practice of data analytics is a requirement for such competence. The authors’ textbook definitely provides a valuable resource for such training.” (Harry J. Foxwell, Computing Reviews, July 7, 2022)

    Table of Contents
    1 A First Look at Data.- 2 Sampling Plans and Estimates.- 3 Probability Theory.- 4 Random Variables and Distributions.- 5 Estimation.- 6 Multiple Random Variables.- 7 Making Decisions in Uncertainty.- 8 Bayesian Statistics.

    Recently viewed products

    © 2026 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account