Description

Book Synopsis

This textbook provides a comprehensive introduction to statistical principles, concepts and methods that are essential in modern statistics and data science. The topics covered include likelihood-based inference, Bayesian statistics, regression, statistical tests and the quantification of uncertainty. Moreover, the book addresses statistical ideas that are useful in modern data analytics, including bootstrapping, modeling of multivariate distributions, missing data analysis, causality as well as principles of experimental design. The textbook includes sufficient material for a two-semester course and is intended for master’s students in data science, statistics and computer science with a rudimentary grasp of probability theory. It will also be useful for data science practitioners who want to strengthen their statistics skills.



Table of Contents

Introduction.- Background in Probability.- Parametric Statistical Models.- Maximum Likelihood Inference.- Bayesian Statistics.- Statistical Decisions.- Regression.- Bootstrapping.- Model Selection and Model Averaging.- Multivariate and Extreme Value Distributions.- Missing and Deficient Data.- Experiments and Causality.


Statistical Foundations, Reasoning and Inference:

Product form

£94.99

Includes FREE delivery

RRP £99.99 – you save £5.00 (5%)

Order before 4pm today for delivery by Sat 17 Jan 2026.

A Hardback by Göran Kauermann, Helmut Küchenhoff, Christian Heumann

15 in stock


    View other formats and editions of Statistical Foundations, Reasoning and Inference: by Göran Kauermann

    Publisher: Springer Nature Switzerland AG
    Publication Date: 01/10/2021
    ISBN13: 9783030698263, 978-3030698263
    ISBN10: 3030698262

    Description

    Book Synopsis

    This textbook provides a comprehensive introduction to statistical principles, concepts and methods that are essential in modern statistics and data science. The topics covered include likelihood-based inference, Bayesian statistics, regression, statistical tests and the quantification of uncertainty. Moreover, the book addresses statistical ideas that are useful in modern data analytics, including bootstrapping, modeling of multivariate distributions, missing data analysis, causality as well as principles of experimental design. The textbook includes sufficient material for a two-semester course and is intended for master’s students in data science, statistics and computer science with a rudimentary grasp of probability theory. It will also be useful for data science practitioners who want to strengthen their statistics skills.



    Table of Contents

    Introduction.- Background in Probability.- Parametric Statistical Models.- Maximum Likelihood Inference.- Bayesian Statistics.- Statistical Decisions.- Regression.- Bootstrapping.- Model Selection and Model Averaging.- Multivariate and Extreme Value Distributions.- Missing and Deficient Data.- Experiments and Causality.


    Recently viewed products

    © 2026 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account