Description

Book Synopsis
Space debris and asteroid impacts pose a very real, very near-term threat to Earth. In order to help study and mitigate these risks, the Stardust program was formed in 2013. This training and research network was devoted to developing and mastering techniques such as removal, deflection, exploitation, and tracking. This book is a collection of many of the topics addressed at the Final Stardust Conference, describing the latest in asteroid monitoring and how engineering efforts can help us reduce space debris. It is a selection of studies bringing together specialists from universities, research institutions, and industry, tasked with the mission of pushing the boundaries of space research with innovative ideas and visionary concepts.

Topics covered by the Symposium:

  • Orbital and Attitude Dynamics Modeling
  • Long Term Orbit and Attitude Evolution
  • Particle Cloud Modeling and Simulation
  • Collision and Impact Modelling and Simulation, Re-entry Modeling and Simulation
  • Asteroid Origins and Characterization
  • Orbit and Attitude Determination
  • Impact Prediction and Risk Analysis, Mission Analysis-Proximity Operations, Active Removal/Deflection Control Under Uncertainty, Active Removal/Deflection Technologies, and Asteroid Manipulation











Table of Contents
Preface.- Section 1: Mission to Asteroids.- Chapter 1: Optimization of Asteroid Capture Missions using Earth Resonant Encounters.- Chapter 2: Evaluating Proximity Operations through High-fidelity Asteroid Deflection Evaluation Software (HADES).- Chapter 3: Prediction of Orbital Parameters for Undiscovered Potentially Hazardous Asteroids Using Machine Learning.- Section 2: Orbit and Uncertainty Propagation.- Chapter 4: Exploring Sensitivity of Orbital Dynamics with Respect to Model Truncation. The Frozen Orbits Approach.- Chapter 5: A Parametric Study of the Orbital Lifetime of Super GTO and SSTO Orbits Based on Semi-Analytical Integration.- Chapter 6: On the Use of Positive Polynomials for the Estimation of Upper and Lower Expectations in Orbital Dynamics.- Section 3: Space Debris Monitoring, Mitigation, and Removal.- Chapter 7: Trajectory Generation Method for Robotic Free-Floating Capture of a Non- Cooperative, Tumbling Target.- Chapter 8: Taxonomy of LEO Space Debris Population for ADR Capture Methods Selection.- Chapter 9: Remote Sensing for Planar Electrostatic Characterization using the Multi-Sphere Method.- Chapter 10: Active Debris Removal and Space Debris Mitigation using Hybrid Propulsion Solutions.- Chapter 11: The Puzzling Case of the Deep-Space Debris WT1190F: A Test Bed for Advanced SSA Techniques.- Chapter 12: Development of a Debris Index.- Section 4: Re-Entry Analysis and Design for Demise.- Chapter 13: A Multidisciplinary Approach of Demisable Tanks’ Re-Entry.- Chapter 14: Design-for-Demise Analysis using the SAM Destructive Re-Entry Model.- Chapter 15: Low-Fidelity Modelling for Aerodynamic Characteristics of Re-Entry Objects.- Chapter 16: Re-Entry Predictions of Potentially Dangerous Uncontrolled Satellites: Challenges and Civil Protection Applications.- Chapter 17: Uncertainty Quantification for Destructive Re-Entry Risk Analysis – JAXA Perspective.

Stardust Final Conference: Advances in Asteroids

Product form

£157.98

Includes FREE delivery

Order before 4pm today for delivery by Sat 13 Dec 2025.

A Hardback by Massimiliano Vasile, Edmondo Minisci, Leopold Summerer

3 in stock


    View other formats and editions of Stardust Final Conference: Advances in Asteroids by Massimiliano Vasile

    Publisher: Springer International Publishing AG
    Publication Date: 11/02/2018
    ISBN13: 9783319699554, 978-3319699554
    ISBN10: 3319699555

    Description

    Book Synopsis
    Space debris and asteroid impacts pose a very real, very near-term threat to Earth. In order to help study and mitigate these risks, the Stardust program was formed in 2013. This training and research network was devoted to developing and mastering techniques such as removal, deflection, exploitation, and tracking. This book is a collection of many of the topics addressed at the Final Stardust Conference, describing the latest in asteroid monitoring and how engineering efforts can help us reduce space debris. It is a selection of studies bringing together specialists from universities, research institutions, and industry, tasked with the mission of pushing the boundaries of space research with innovative ideas and visionary concepts.

    Topics covered by the Symposium:

    • Orbital and Attitude Dynamics Modeling
    • Long Term Orbit and Attitude Evolution
    • Particle Cloud Modeling and Simulation
    • Collision and Impact Modelling and Simulation, Re-entry Modeling and Simulation
    • Asteroid Origins and Characterization
    • Orbit and Attitude Determination
    • Impact Prediction and Risk Analysis, Mission Analysis-Proximity Operations, Active Removal/Deflection Control Under Uncertainty, Active Removal/Deflection Technologies, and Asteroid Manipulation











    Table of Contents
    Preface.- Section 1: Mission to Asteroids.- Chapter 1: Optimization of Asteroid Capture Missions using Earth Resonant Encounters.- Chapter 2: Evaluating Proximity Operations through High-fidelity Asteroid Deflection Evaluation Software (HADES).- Chapter 3: Prediction of Orbital Parameters for Undiscovered Potentially Hazardous Asteroids Using Machine Learning.- Section 2: Orbit and Uncertainty Propagation.- Chapter 4: Exploring Sensitivity of Orbital Dynamics with Respect to Model Truncation. The Frozen Orbits Approach.- Chapter 5: A Parametric Study of the Orbital Lifetime of Super GTO and SSTO Orbits Based on Semi-Analytical Integration.- Chapter 6: On the Use of Positive Polynomials for the Estimation of Upper and Lower Expectations in Orbital Dynamics.- Section 3: Space Debris Monitoring, Mitigation, and Removal.- Chapter 7: Trajectory Generation Method for Robotic Free-Floating Capture of a Non- Cooperative, Tumbling Target.- Chapter 8: Taxonomy of LEO Space Debris Population for ADR Capture Methods Selection.- Chapter 9: Remote Sensing for Planar Electrostatic Characterization using the Multi-Sphere Method.- Chapter 10: Active Debris Removal and Space Debris Mitigation using Hybrid Propulsion Solutions.- Chapter 11: The Puzzling Case of the Deep-Space Debris WT1190F: A Test Bed for Advanced SSA Techniques.- Chapter 12: Development of a Debris Index.- Section 4: Re-Entry Analysis and Design for Demise.- Chapter 13: A Multidisciplinary Approach of Demisable Tanks’ Re-Entry.- Chapter 14: Design-for-Demise Analysis using the SAM Destructive Re-Entry Model.- Chapter 15: Low-Fidelity Modelling for Aerodynamic Characteristics of Re-Entry Objects.- Chapter 16: Re-Entry Predictions of Potentially Dangerous Uncontrolled Satellites: Challenges and Civil Protection Applications.- Chapter 17: Uncertainty Quantification for Destructive Re-Entry Risk Analysis – JAXA Perspective.

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account