Description

Book Synopsis
The study of stable singularities is based on the now classical theories of Hassler Whitney, who determined the generic singularities (or lack of them) of Rn ~ Rm (m ~ 2n - 1) and R2 ~ R2, and Marston Morse, for mappings who studied these singularities for Rn ~ R.

Table of Contents
I: Preliminaries on Manifolds.- §1. Manifolds.- §2. Differentiable Mappings and Submanifolds.- §3. Tangent Spaces.- §4. Partitions of Unity.- §5. Vector Bundles.- §6. Integration of Vector Fields.- II: Transversality.- §1. Sard’s Theorem.- §2. Jet Bundles.- §3. The Whitney C? Topology.- §4. Transversality.- §5. The Whitney Embedding Theorem.- §6. Morse Theory.- §7. The Tubular Neighborhood Theorem.- III: Stable Mappings.- §1. Stable and Infinitesimally Stable Mappings.- §2. Examples.- §3. Immersions with Normal Crossings.- §4. Submersions with Folds.- IV: The Malgrange Preparation Theorem.- §1. The Weierstrass Preparation Theorem.- §2. The Malgrange Preparation Theorem.- §3. The Generalized Malgrange Preparation Theorem.- V: Various Equivalent Notions of Stability.- §1. Another Formulation of Infinitesimal Stability.- §2. Stability Under Deformations.- §3. A Characterization of Trivial Deformations.- §4. Infinitesimal Stability => Stability.- §5. Local Transverse Stability.- §6. Transverse Stability.- §7. Summary.- VI: Classification of Singularities, Part I: The Thom-Boardman Invariants.- §1. The Sr Classification.- §2. The Whitney Theory for Generic Mappings between 2-Manifolds.- §3. The Intrinsic Derivative.- §4. The Sr,s Singularities.- §5. The Thom-Boardman Stratification.- §6. Stable Maps Are Not Dense.- VII: Classification of Singularities, Part II: The Local Ring of a Singularity.- §1. Introduction.- §2. Finite Mappings.- §3. Contact Classes and Morin Singularities.- §4. Canonical Forms for Morin Singularities.- §5. Umbilics.- §6. Stable Mappings in Low Dimensions.- §A. Lie Groups.- Symbol Index.

Stable Mappings and Their Singularities 14 Graduate Texts in Mathematics

Product form

£71.24

Includes FREE delivery

RRP £74.99 – you save £3.75 (5%)

Order before 4pm tomorrow for delivery by Wed 17 Dec 2025.

A Paperback by M. Golubitsky, V. Guillemin

15 in stock


    View other formats and editions of Stable Mappings and Their Singularities 14 Graduate Texts in Mathematics by M. Golubitsky

    Publisher: Springer New York
    Publication Date: 3/29/1974 12:00:00 AM
    ISBN13: 9780387900735, 978-0387900735
    ISBN10: 038790073X

    Description

    Book Synopsis
    The study of stable singularities is based on the now classical theories of Hassler Whitney, who determined the generic singularities (or lack of them) of Rn ~ Rm (m ~ 2n - 1) and R2 ~ R2, and Marston Morse, for mappings who studied these singularities for Rn ~ R.

    Table of Contents
    I: Preliminaries on Manifolds.- §1. Manifolds.- §2. Differentiable Mappings and Submanifolds.- §3. Tangent Spaces.- §4. Partitions of Unity.- §5. Vector Bundles.- §6. Integration of Vector Fields.- II: Transversality.- §1. Sard’s Theorem.- §2. Jet Bundles.- §3. The Whitney C? Topology.- §4. Transversality.- §5. The Whitney Embedding Theorem.- §6. Morse Theory.- §7. The Tubular Neighborhood Theorem.- III: Stable Mappings.- §1. Stable and Infinitesimally Stable Mappings.- §2. Examples.- §3. Immersions with Normal Crossings.- §4. Submersions with Folds.- IV: The Malgrange Preparation Theorem.- §1. The Weierstrass Preparation Theorem.- §2. The Malgrange Preparation Theorem.- §3. The Generalized Malgrange Preparation Theorem.- V: Various Equivalent Notions of Stability.- §1. Another Formulation of Infinitesimal Stability.- §2. Stability Under Deformations.- §3. A Characterization of Trivial Deformations.- §4. Infinitesimal Stability => Stability.- §5. Local Transverse Stability.- §6. Transverse Stability.- §7. Summary.- VI: Classification of Singularities, Part I: The Thom-Boardman Invariants.- §1. The Sr Classification.- §2. The Whitney Theory for Generic Mappings between 2-Manifolds.- §3. The Intrinsic Derivative.- §4. The Sr,s Singularities.- §5. The Thom-Boardman Stratification.- §6. Stable Maps Are Not Dense.- VII: Classification of Singularities, Part II: The Local Ring of a Singularity.- §1. Introduction.- §2. Finite Mappings.- §3. Contact Classes and Morin Singularities.- §4. Canonical Forms for Morin Singularities.- §5. Umbilics.- §6. Stable Mappings in Low Dimensions.- §A. Lie Groups.- Symbol Index.

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account