Description

Book Synopsis

This book provides a general framework for learning sparse graphical models with conditional independence tests. It includes complete treatments for Gaussian, Poisson, multinomial, and mixed data; unified treatments for covariate adjustments, data integration, and network comparison; unified treatments for missing data and heterogeneous data; efficient methods for joint estimation of multiple graphical models; effective methods of high-dimensional variable selection; and effective methods of high-dimensional inference. The methods possess an embarrassingly parallel structure in performing conditional independence tests, and the computation can be significantly accelerated by running in parallel on a multi-core computer or a parallel architecture. This book is intended to serve researchers and scientists interested in high-dimensional statistics, and graduate students in broad data science disciplines.

Key Features:

  • A general framework for learning sparse g

    Table of Contents

    1. Introduction to Sparse Graphical Models 2. Gaussian Graphical Models 3. Gaussian Graphical Modeling with Missing Data 4. Gaussian Graphical Modeling for Heterogeneous Data 5. Poisson Graphical Models 6. Mixed Graphical Models 7. Joint Estimation of Multiple Graphical Models 8. Nonlinear and Non-Gaussian Graphical Models 9. High-Dimensional Inference with the Aid of Sparse Graphical Modeling 10. Appendix

Sparse Graphical Modeling for High Dimensional

Product form

£87.39

Includes FREE delivery

RRP £91.99 – you save £4.60 (5%)

Order before 4pm today for delivery by Sat 13 Dec 2025.

A Hardback by Faming Liang, Bochao Jia

1 in stock


    View other formats and editions of Sparse Graphical Modeling for High Dimensional by Faming Liang

    Publisher: CRC Press
    Publication Date: 8/2/2023 12:00:00 AM
    ISBN13: 9780367183738, 978-0367183738
    ISBN10: 0367183730

    Description

    Book Synopsis

    This book provides a general framework for learning sparse graphical models with conditional independence tests. It includes complete treatments for Gaussian, Poisson, multinomial, and mixed data; unified treatments for covariate adjustments, data integration, and network comparison; unified treatments for missing data and heterogeneous data; efficient methods for joint estimation of multiple graphical models; effective methods of high-dimensional variable selection; and effective methods of high-dimensional inference. The methods possess an embarrassingly parallel structure in performing conditional independence tests, and the computation can be significantly accelerated by running in parallel on a multi-core computer or a parallel architecture. This book is intended to serve researchers and scientists interested in high-dimensional statistics, and graduate students in broad data science disciplines.

    Key Features:

    • A general framework for learning sparse g

      Table of Contents

      1. Introduction to Sparse Graphical Models 2. Gaussian Graphical Models 3. Gaussian Graphical Modeling with Missing Data 4. Gaussian Graphical Modeling for Heterogeneous Data 5. Poisson Graphical Models 6. Mixed Graphical Models 7. Joint Estimation of Multiple Graphical Models 8. Nonlinear and Non-Gaussian Graphical Models 9. High-Dimensional Inference with the Aid of Sparse Graphical Modeling 10. Appendix

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account