Description

Book Synopsis

This book comprehensively covers the topic of recommender systems, which provide personalized recommendations of products or services to users based on their previous searches or purchases. Recommender system methods have been adapted to diverse applications including query log mining, social networking, news recommendations, and computational advertising. This book synthesizes both fundamental and advanced topics of a research area that has now reached maturity. The chapters of this book are organized into three categories:

Algorithms and evaluation: These chapters discuss the fundamental algorithms in recommender systems, including collaborative filtering methods, content-based methods, knowledge-based methods, ensemble-based methods, and evaluation.

Recommendations in specific domains and contexts: the context of a recommendation can be viewed as important side information that affects the recommendation goals. Different types of context such as temporal data, spatial data, social data, tagging data, and trustworthiness are explored.

Advanced topics and applications: Various robustness aspects of recommender systems, such as shilling systems, attack models, and their defenses are discussed.

In addition, recent topics, such as learning to rank, multi-armed bandits, group systems, multi-criteria systems, and active learning systems, are introduced together with applications.

Although this book primarily serves as a textbook, it will also appeal to industrial practitioners and researchers due to its focus on applications and references. Numerous examples and exercises have been provided, and a solution manual is available for instructors.

Trade Review
“Charu Aggarwal, a well-known, reputable IBM researcher, has taken the time to distill the advances in the design of recommender systems since the advent of the web … . Extensive bibliographic notes at the end of each chapter and more than 700 references in the book bibliography make this monograph an excellent resource for both practitioners and researchers. … Without a doubt, this is an excellent addition to my bookshelf!” (Fernando Berzal, Computing Reviews, February, 2017)



Table of Contents
An Introduction to Recommender Systems.- Neighborhood-Based Collaborative Filtering.- Model-Based Collaborative Filtering.- Content-Based Recommender Systems.- Knowledge-Based Recommender Systems.- Ensemble-Based and Hybrid Recommender Systems.- Evaluating Recommender Systems.- Context-Sensitive Recommender Systems.- Time- and Location-Sensitive Recommender Systems.- Structural Recommendations in Networks.- Social and Trust-Centric Recommender Systems.- Attack-Resistant Recommender Systems.- Advanced Topics in Recommender Systems.

Recommender Systems: The Textbook

Product form

£44.99

Includes FREE delivery

RRP £49.99 – you save £5.00 (10%)

Order before 4pm tomorrow for delivery by Mon 26 Jan 2026.

A Hardback by Charu C. Aggarwal

15 in stock


    View other formats and editions of Recommender Systems: The Textbook by Charu C. Aggarwal

    Publisher: Springer International Publishing AG
    Publication Date: 04/04/2016
    ISBN13: 9783319296579, 978-3319296579
    ISBN10: 3319296574

    Description

    Book Synopsis

    This book comprehensively covers the topic of recommender systems, which provide personalized recommendations of products or services to users based on their previous searches or purchases. Recommender system methods have been adapted to diverse applications including query log mining, social networking, news recommendations, and computational advertising. This book synthesizes both fundamental and advanced topics of a research area that has now reached maturity. The chapters of this book are organized into three categories:

    Algorithms and evaluation: These chapters discuss the fundamental algorithms in recommender systems, including collaborative filtering methods, content-based methods, knowledge-based methods, ensemble-based methods, and evaluation.

    Recommendations in specific domains and contexts: the context of a recommendation can be viewed as important side information that affects the recommendation goals. Different types of context such as temporal data, spatial data, social data, tagging data, and trustworthiness are explored.

    Advanced topics and applications: Various robustness aspects of recommender systems, such as shilling systems, attack models, and their defenses are discussed.

    In addition, recent topics, such as learning to rank, multi-armed bandits, group systems, multi-criteria systems, and active learning systems, are introduced together with applications.

    Although this book primarily serves as a textbook, it will also appeal to industrial practitioners and researchers due to its focus on applications and references. Numerous examples and exercises have been provided, and a solution manual is available for instructors.

    Trade Review
    “Charu Aggarwal, a well-known, reputable IBM researcher, has taken the time to distill the advances in the design of recommender systems since the advent of the web … . Extensive bibliographic notes at the end of each chapter and more than 700 references in the book bibliography make this monograph an excellent resource for both practitioners and researchers. … Without a doubt, this is an excellent addition to my bookshelf!” (Fernando Berzal, Computing Reviews, February, 2017)



    Table of Contents
    An Introduction to Recommender Systems.- Neighborhood-Based Collaborative Filtering.- Model-Based Collaborative Filtering.- Content-Based Recommender Systems.- Knowledge-Based Recommender Systems.- Ensemble-Based and Hybrid Recommender Systems.- Evaluating Recommender Systems.- Context-Sensitive Recommender Systems.- Time- and Location-Sensitive Recommender Systems.- Structural Recommendations in Networks.- Social and Trust-Centric Recommender Systems.- Attack-Resistant Recommender Systems.- Advanced Topics in Recommender Systems.

    Recently viewed products

    © 2026 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account