Description

Book Synopsis
The general problem addressed in this book is a large and important one: how to usefully deal with huge storehouses of complex information about real-world situations. Every one of the major modes of interacting with such storehouses – querying, data mining, data analysis – is addressed by current technologies only in very limited and unsatisfactory ways. The impact of a solution to this problem would be huge and pervasive, as the domains of human pursuit to which such storehouses are acutely relevant is numerous and rapidly growing. Finally, we give a more detailed treatment of one potential solution with this class, based on our prior work with the Probabilistic Logic Networks (PLN) formalism. We show how PLN can be used to carry out realworld reasoning, by means of a number of practical examples of reasoning regarding human activities inreal-world situations.

Table of Contents
Introduction.- Knowledge Representation Using Formal Logic.- Quantifying and Managing Uncertainty.- Representing Temporal Knowledge.- Temporal Reasoning.- Representing and Reasoning On Spatial Knowledge.- Representing and Reasoning on Contextual Knowledge.- Causal Reasoning.- Extracting Logical Knowledge from Raw Data.- Scalable Spatiotemporal Logical Knowledge Storage.- Mining Patterns from Large Spatiotemporal Logical Knowledge Stores.- Probabilistic Logic Networks.- Temporal and Contextual Reasoning in PLN.- Inferring the Causes of Observed Changes.-Adaptive Inference Control.

Real-World Reasoning: Toward Scalable, Uncertain Spatiotemporal, Contextual and Causal Inference

Product form

£107.38

Includes FREE delivery

Order before 4pm tomorrow for delivery by Wed 21 Jan 2026.

A Paperback by Ben Goertzel, Nil Geisweiller, Lucio Coelho

1 in stock


    View other formats and editions of Real-World Reasoning: Toward Scalable, Uncertain Spatiotemporal, Contextual and Causal Inference by Ben Goertzel

    Publisher: Atlantis Press (Zeger Karssen)
    Publication Date: 01/03/2014
    ISBN13: 9789462390539, 978-9462390539
    ISBN10: 9462390533

    Description

    Book Synopsis
    The general problem addressed in this book is a large and important one: how to usefully deal with huge storehouses of complex information about real-world situations. Every one of the major modes of interacting with such storehouses – querying, data mining, data analysis – is addressed by current technologies only in very limited and unsatisfactory ways. The impact of a solution to this problem would be huge and pervasive, as the domains of human pursuit to which such storehouses are acutely relevant is numerous and rapidly growing. Finally, we give a more detailed treatment of one potential solution with this class, based on our prior work with the Probabilistic Logic Networks (PLN) formalism. We show how PLN can be used to carry out realworld reasoning, by means of a number of practical examples of reasoning regarding human activities inreal-world situations.

    Table of Contents
    Introduction.- Knowledge Representation Using Formal Logic.- Quantifying and Managing Uncertainty.- Representing Temporal Knowledge.- Temporal Reasoning.- Representing and Reasoning On Spatial Knowledge.- Representing and Reasoning on Contextual Knowledge.- Causal Reasoning.- Extracting Logical Knowledge from Raw Data.- Scalable Spatiotemporal Logical Knowledge Storage.- Mining Patterns from Large Spatiotemporal Logical Knowledge Stores.- Probabilistic Logic Networks.- Temporal and Contextual Reasoning in PLN.- Inferring the Causes of Observed Changes.-Adaptive Inference Control.

    Recently viewed products

    © 2026 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account