Description

Book Synopsis
This textbook introduces readers to real analysis in one and n dimensions. It is divided into two parts: Part I explores real analysis in one variable, starting with key concepts such as the construction of the real number system, metric spaces, and real sequences and series. In turn, Part II addresses the multi-variable aspects of real analysis. Further, the book presents detailed, rigorous proofs of the implicit theorem for the vectorial case by applying the Banach fixed-point theorem and the differential forms concept to surfaces in Rn. It also provides a brief introduction to Riemannian geometry.
With its rigorous, elegant proofs, this self-contained work is easy to read, making it suitable for undergraduate and beginning graduate students seeking a deeper understanding of real analysis and applications, and for all those looking for a well-founded, detailed approach to real analysis.


Table of Contents
Chapter 01- Real Numbers.- Chapter 02- Metric Spaces.- Chapter 03- Real Sequences and Series.- Chapter 04- Real Function Limits.- Chapter 05- Continuous Functions.- Chapter 06- Derivatives.- Chapter 07- The Riemann Integral.- Chapter 08- Differential Analysis in Rn.- Chapter 09- Integration in Rn.- Chapter 10- Topics on Vector Calculus and Vector Analysis.

Real Analysis and Applications

Product form

£49.49

Includes FREE delivery

RRP £54.99 – you save £5.50 (10%)

Order before 4pm today for delivery by Fri 19 Dec 2025.

A Hardback by Fabio Silva Botelho

2 in stock


    View other formats and editions of Real Analysis and Applications by Fabio Silva Botelho

    Publisher: Springer International Publishing AG
    Publication Date: 24/05/2018
    ISBN13: 9783319786308, 978-3319786308
    ISBN10: 331978630X

    Description

    Book Synopsis
    This textbook introduces readers to real analysis in one and n dimensions. It is divided into two parts: Part I explores real analysis in one variable, starting with key concepts such as the construction of the real number system, metric spaces, and real sequences and series. In turn, Part II addresses the multi-variable aspects of real analysis. Further, the book presents detailed, rigorous proofs of the implicit theorem for the vectorial case by applying the Banach fixed-point theorem and the differential forms concept to surfaces in Rn. It also provides a brief introduction to Riemannian geometry.
    With its rigorous, elegant proofs, this self-contained work is easy to read, making it suitable for undergraduate and beginning graduate students seeking a deeper understanding of real analysis and applications, and for all those looking for a well-founded, detailed approach to real analysis.


    Table of Contents
    Chapter 01- Real Numbers.- Chapter 02- Metric Spaces.- Chapter 03- Real Sequences and Series.- Chapter 04- Real Function Limits.- Chapter 05- Continuous Functions.- Chapter 06- Derivatives.- Chapter 07- The Riemann Integral.- Chapter 08- Differential Analysis in Rn.- Chapter 09- Integration in Rn.- Chapter 10- Topics on Vector Calculus and Vector Analysis.

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account