Description

Book Synopsis
Jared P. Lander is the owner of Lander Analytics, a statistical consulting firm based in New York City, the organizer of the New York Open Statistical Programming Meetup and an adjunct professor of statistics at Columbia University. He is also a tour guide for Scott's Pizza Tours and an advisor to Brewla Bars, a gourmet ice pop startup. With an M.A. from Columbia University in statistics and a B.A. from Muhlenberg College in mathematics, he has experience in both academic research and industry. His work for both large and small organizations spans politics, tech startups, fund raising, music, finance, healthcare, and humanitarian relief efforts. He specializes in data management, multilevel models, machine learning, generalized linear models, visualization, data management, and statistical computing.

Table of Contents

Foreword xv

Preface xvii

Acknowledgments xxi

About the Author xxv


Chapter 1: Getting R 1

1.1 Downloading R 1

1.2 R Version 2

1.3 32-bit vs. 64-bit 2

1.4 Installing 2

1.5 Microsoft R Open 14

1.6 Conclusion 14


Chapter 2: The R Environment 15

2.1 Command Line Interface 16

2.2 RStudio 17

2.3 Microsoft Visual Studio 31

2.4 Conclusion 31


Chapter 3: R Packages 33

3.1 Installing Packages 33

3.2 Loading Packages 36

3.3 Building a Package 37

3.4 Conclusion 37


Chapter 4: Basics of R 39

4.1 Basic Math 39

4.2 Variables 40

4.3 Data Types 42

4.4 Vectors 47

4.5 Calling Functions 52

4.6 Function Documentation 52

4.7 Missing Data 53

4.8 Pipes 54

4.9 Conclusion 55


Chapter 5: Advanced Data Structures 57

5.1 data.frames 57

5.2 Lists 64

5.3 Matrices 70

5.4 Arrays 73

5.5 Conclusion 74


Chapter 6: Reading Data into R 75

6.1 Reading CSVs 75

6.2 Excel Data 79

6.3 Reading from Databases 81

6.4 Data from Other Statistical Tools 84

6.5 R Binary Files 85

6.6 Data Included with R 87

6.7 Extract Data from Web Sites 88

6.8 Reading JSON Data 90

6.9 Conclusion 92


Chapter 7: Statistical Graphics 93

7.1 Base Graphics 93

7.2 ggplot2 96

7.3 Conclusion 110


Chapter 8: Writing R functions 111

8.1 Hello, World! 111

8.2 Function Arguments 112

8.3 Return Values 114

8.4 do.call 115

8.5 Conclusion 116


Chapter 9: Control Statements 117

9.1 if and else 117

9.2 switch 120

9.3 ifelse 121

9.4 Compound Tests 123

9.5 Conclusion 123


Chapter 10: Loops, the Un-R Way to Iterate 125

10.1 for Loops 125

10.2 while Loops 127

10.3 Controlling Loops 127

10.4 Conclusion 128


Chapter 11: Group Manipulation 129

11.1 Apply Family 129

11.2 aggregate 132

11.3 plyr 136

11.4 data.table 140

11.5 Conclusion 150


Chapter 12: Faster Group Manipulation with dplyr 151

12.1 Pipes 151

12.2 tbl 152

12.3 select 153

12.4 filter 161

12.5 slice 167

12.6 mutate 168

12.7 summarize 171

12.8 group_by 172

12.9 arrange 173

12.10 do 174

12.11 dplyr with Databases 176

12.12 Conclusion 178


Chapter 13: Iterating with purrr 179

13.1 map 179

13.2 map with Specified Types 181

13.3 Iterating over a data.frame 186

13.4 map with Multiple Inputs 187

13.5 Conclusion 188


Chapter 14: Data Reshaping 189

14.1 cbind and rbind 189

14.2 Joins 190

14.3 reshape2 197

14.4 Conclusion 200


Chapter 15: Reshaping Data in the Tidyverse 201

15.1 Binding Rows and Columns 201

15.2 Joins with dplyr 202

15.3 Converting Data Formats 207

15.4 Conclusion 210


Chapter 16: Manipulating Strings 211

16.1 paste 211

16.2 sprintf 212

16.3 Extracting Text 213

16.4 Regular Expressions 217

16.5 Conclusion 224


Chapter 17: Probability Distributions 225

17.1 Normal Distribution 225

17.2 Binomial Distribution 230

17.3 Poisson Distribution 235

17.4 Other Distributions 238

17.5 Conclusion 240


Chapter 18: Basic Statistics 241

18.1 Summary Statistics 241

18.2 Correlation and Covariance 244

18.3 T-Tests 252

18.4 ANOVA 260

18.5 Conclusion 263


Chapter 19: Linear Models 265

19.1 Simple Linear Regression 265

19.2 Multiple Regression 270

19.3 Conclusion 287


Chapter 20: Generalized Linear Models 289

20.1 Logistic Regression 289

20.2 Poisson Regression 293

20.3 Other Generalized Linear Models 297

20.4 Survival Analysis 297

20.5 Conclusion 302


Chapter 21: Model Diagnostics 303

21.1 Residuals 303

21.2 Comparing Models 309

21.3 Cross-Validation 313

21.4 Bootstrap 318

21.5 Stepwise Variable Selection 321

21.6 Conclusion 324


Chapter 22: Regularization and Shrinkage 325

22.1 Elastic Net 325

22.2 Bayesian Shrinkage 342

22.3 Conclusion 346


Chapter 23: Nonlinear Models 347

23.1 Nonlinear Least Squares 347

23.2 Splines 350

23.3 Generalized Additive Models 353

23.4 Decision Trees 359

23.5 Boosted Trees 361

23.6 Random Forests 364

23.7 Conclusion 366


Chapter 24: Time Series and Autocorrelation 367

24.1 Autoregressive Moving Average 367

24.2 VAR 374

24.3 GARCH 379

24.4 Conclusion 388


Chapter 25: Clustering 389

25.1 K-means 389

25.2 PAM 397

25.3 Hierarchical Clustering 403

25.4 Conclusion 407


Chapter 26: Model Fitting with Caret 409

26.1 Caret Basics 409

26.2 Caret Options 409

26.3 Tuning a Boosted Tree 411

26.4 Conclusion 415


Chapter 27: Reproducibility and Reports with knitr 417

27.1 Installing a LaTeX Program 417

27.2 LaTeX Primer 418

27.3 Using knitr with LaTeX 420

27.4 Conclusion 426


Chapter 28: Rich Documents with RMarkdown 427

28.1 Document Compilation 427

28.2 Document Header 427

28.3 Markdown Primer 429

28.4 Markdown Code Chunks 430

28.5 htmlwidgets 432

28.6 RMarkdown Slideshows 444

28.7 Conclusion 446


Chapter 29: Interactive Dashboards with Shiny 447

29.1 Shiny in RMarkdown 447

29.2 Reactive Expressions in Shiny 452

29.3 Server and UI 454

29.4 Conclusion 463


Chapter 30: Building R Packages 465

30.1 Folder Structure 465

30.2 Package Files 465

30.3 Package Documentation 472

30.4 Tests 475

30.5 Checking, Building and Installing 477

30.6 Submitting to CRAN 479

30.7 C++ Code 479

30.8 Conclusion 484


Appendix A: Real-Life Resources 485

A.1 Meetups 485

A.2 Stack Overflow 486

A.3 Twitter 487

A.4 Conferences 487

A.5 Web Sites 488

A.6 Documents 488

A.7 Books 488

A.8 Conclusion 489


Appendix B: Glossary 491


List of Figures 507

List of Tables 513

General Index 515

Index of Functions 521

Index of Packages 527

Index of People 529

Data Index 531

R for Everyone

Product form

£33.29

Includes FREE delivery

RRP £36.99 – you save £3.70 (10%)

Order before 4pm today for delivery by Wed 21 Jan 2026.

A Paperback / softback by Jared Lander

15 in stock


    View other formats and editions of R for Everyone by Jared Lander

    Publisher: Pearson Education (US)
    Publication Date: 28/06/2017
    ISBN13: 9780134546926, 978-0134546926
    ISBN10: 013454692X

    Description

    Book Synopsis
    Jared P. Lander is the owner of Lander Analytics, a statistical consulting firm based in New York City, the organizer of the New York Open Statistical Programming Meetup and an adjunct professor of statistics at Columbia University. He is also a tour guide for Scott's Pizza Tours and an advisor to Brewla Bars, a gourmet ice pop startup. With an M.A. from Columbia University in statistics and a B.A. from Muhlenberg College in mathematics, he has experience in both academic research and industry. His work for both large and small organizations spans politics, tech startups, fund raising, music, finance, healthcare, and humanitarian relief efforts. He specializes in data management, multilevel models, machine learning, generalized linear models, visualization, data management, and statistical computing.

    Table of Contents

    Foreword xv

    Preface xvii

    Acknowledgments xxi

    About the Author xxv


    Chapter 1: Getting R 1

    1.1 Downloading R 1

    1.2 R Version 2

    1.3 32-bit vs. 64-bit 2

    1.4 Installing 2

    1.5 Microsoft R Open 14

    1.6 Conclusion 14


    Chapter 2: The R Environment 15

    2.1 Command Line Interface 16

    2.2 RStudio 17

    2.3 Microsoft Visual Studio 31

    2.4 Conclusion 31


    Chapter 3: R Packages 33

    3.1 Installing Packages 33

    3.2 Loading Packages 36

    3.3 Building a Package 37

    3.4 Conclusion 37


    Chapter 4: Basics of R 39

    4.1 Basic Math 39

    4.2 Variables 40

    4.3 Data Types 42

    4.4 Vectors 47

    4.5 Calling Functions 52

    4.6 Function Documentation 52

    4.7 Missing Data 53

    4.8 Pipes 54

    4.9 Conclusion 55


    Chapter 5: Advanced Data Structures 57

    5.1 data.frames 57

    5.2 Lists 64

    5.3 Matrices 70

    5.4 Arrays 73

    5.5 Conclusion 74


    Chapter 6: Reading Data into R 75

    6.1 Reading CSVs 75

    6.2 Excel Data 79

    6.3 Reading from Databases 81

    6.4 Data from Other Statistical Tools 84

    6.5 R Binary Files 85

    6.6 Data Included with R 87

    6.7 Extract Data from Web Sites 88

    6.8 Reading JSON Data 90

    6.9 Conclusion 92


    Chapter 7: Statistical Graphics 93

    7.1 Base Graphics 93

    7.2 ggplot2 96

    7.3 Conclusion 110


    Chapter 8: Writing R functions 111

    8.1 Hello, World! 111

    8.2 Function Arguments 112

    8.3 Return Values 114

    8.4 do.call 115

    8.5 Conclusion 116


    Chapter 9: Control Statements 117

    9.1 if and else 117

    9.2 switch 120

    9.3 ifelse 121

    9.4 Compound Tests 123

    9.5 Conclusion 123


    Chapter 10: Loops, the Un-R Way to Iterate 125

    10.1 for Loops 125

    10.2 while Loops 127

    10.3 Controlling Loops 127

    10.4 Conclusion 128


    Chapter 11: Group Manipulation 129

    11.1 Apply Family 129

    11.2 aggregate 132

    11.3 plyr 136

    11.4 data.table 140

    11.5 Conclusion 150


    Chapter 12: Faster Group Manipulation with dplyr 151

    12.1 Pipes 151

    12.2 tbl 152

    12.3 select 153

    12.4 filter 161

    12.5 slice 167

    12.6 mutate 168

    12.7 summarize 171

    12.8 group_by 172

    12.9 arrange 173

    12.10 do 174

    12.11 dplyr with Databases 176

    12.12 Conclusion 178


    Chapter 13: Iterating with purrr 179

    13.1 map 179

    13.2 map with Specified Types 181

    13.3 Iterating over a data.frame 186

    13.4 map with Multiple Inputs 187

    13.5 Conclusion 188


    Chapter 14: Data Reshaping 189

    14.1 cbind and rbind 189

    14.2 Joins 190

    14.3 reshape2 197

    14.4 Conclusion 200


    Chapter 15: Reshaping Data in the Tidyverse 201

    15.1 Binding Rows and Columns 201

    15.2 Joins with dplyr 202

    15.3 Converting Data Formats 207

    15.4 Conclusion 210


    Chapter 16: Manipulating Strings 211

    16.1 paste 211

    16.2 sprintf 212

    16.3 Extracting Text 213

    16.4 Regular Expressions 217

    16.5 Conclusion 224


    Chapter 17: Probability Distributions 225

    17.1 Normal Distribution 225

    17.2 Binomial Distribution 230

    17.3 Poisson Distribution 235

    17.4 Other Distributions 238

    17.5 Conclusion 240


    Chapter 18: Basic Statistics 241

    18.1 Summary Statistics 241

    18.2 Correlation and Covariance 244

    18.3 T-Tests 252

    18.4 ANOVA 260

    18.5 Conclusion 263


    Chapter 19: Linear Models 265

    19.1 Simple Linear Regression 265

    19.2 Multiple Regression 270

    19.3 Conclusion 287


    Chapter 20: Generalized Linear Models 289

    20.1 Logistic Regression 289

    20.2 Poisson Regression 293

    20.3 Other Generalized Linear Models 297

    20.4 Survival Analysis 297

    20.5 Conclusion 302


    Chapter 21: Model Diagnostics 303

    21.1 Residuals 303

    21.2 Comparing Models 309

    21.3 Cross-Validation 313

    21.4 Bootstrap 318

    21.5 Stepwise Variable Selection 321

    21.6 Conclusion 324


    Chapter 22: Regularization and Shrinkage 325

    22.1 Elastic Net 325

    22.2 Bayesian Shrinkage 342

    22.3 Conclusion 346


    Chapter 23: Nonlinear Models 347

    23.1 Nonlinear Least Squares 347

    23.2 Splines 350

    23.3 Generalized Additive Models 353

    23.4 Decision Trees 359

    23.5 Boosted Trees 361

    23.6 Random Forests 364

    23.7 Conclusion 366


    Chapter 24: Time Series and Autocorrelation 367

    24.1 Autoregressive Moving Average 367

    24.2 VAR 374

    24.3 GARCH 379

    24.4 Conclusion 388


    Chapter 25: Clustering 389

    25.1 K-means 389

    25.2 PAM 397

    25.3 Hierarchical Clustering 403

    25.4 Conclusion 407


    Chapter 26: Model Fitting with Caret 409

    26.1 Caret Basics 409

    26.2 Caret Options 409

    26.3 Tuning a Boosted Tree 411

    26.4 Conclusion 415


    Chapter 27: Reproducibility and Reports with knitr 417

    27.1 Installing a LaTeX Program 417

    27.2 LaTeX Primer 418

    27.3 Using knitr with LaTeX 420

    27.4 Conclusion 426


    Chapter 28: Rich Documents with RMarkdown 427

    28.1 Document Compilation 427

    28.2 Document Header 427

    28.3 Markdown Primer 429

    28.4 Markdown Code Chunks 430

    28.5 htmlwidgets 432

    28.6 RMarkdown Slideshows 444

    28.7 Conclusion 446


    Chapter 29: Interactive Dashboards with Shiny 447

    29.1 Shiny in RMarkdown 447

    29.2 Reactive Expressions in Shiny 452

    29.3 Server and UI 454

    29.4 Conclusion 463


    Chapter 30: Building R Packages 465

    30.1 Folder Structure 465

    30.2 Package Files 465

    30.3 Package Documentation 472

    30.4 Tests 475

    30.5 Checking, Building and Installing 477

    30.6 Submitting to CRAN 479

    30.7 C++ Code 479

    30.8 Conclusion 484


    Appendix A: Real-Life Resources 485

    A.1 Meetups 485

    A.2 Stack Overflow 486

    A.3 Twitter 487

    A.4 Conferences 487

    A.5 Web Sites 488

    A.6 Documents 488

    A.7 Books 488

    A.8 Conclusion 489


    Appendix B: Glossary 491


    List of Figures 507

    List of Tables 513

    General Index 515

    Index of Functions 521

    Index of Packages 527

    Index of People 529

    Data Index 531

    Recently viewed products

    © 2026 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account