Description

Book Synopsis


Table of Contents
Quantum Chemistry and Molecular Interactions A Introduction: Tools from Math and Physics A.1 Mathematics A.2 Classical physics I Atomic Structure 1 Classical and Quantum Mechanics 1.1 Introduction to the Text 1.2 The Classical World 1.3 The Quantum World 1.4 One-Electron Atoms 1.5 Merging the Classical and Quantum Worlds 2 The Schrödinger Equation 2.1 Mathematical Tools of Quantum Mechanics 2.2 Fundamental Examples 3 One-Electron Atoms 3.1 Solving the One-Electron Atom Schrödinger Equation 3.2 The One-Electron Atom Orbital Wavefunctions 3.3 Electric Dipole Interactions 3.4 Magnetic Dipole Interactions 4 Many-Electron Atoms 4.1 Many-Electron Spatial Wavefunctions 4.2 Approximate Solution to the Schrodinger Equation 4.3 Spin Wavefunctions and Symmetrization 4.4 Vector Model of the Many-Electron Atom 4.5 Periodicity of the Elements 4.6 Atomic Structure: The Key to Chemistry II Molecular Structure 5 Chemical Bonds 5.1 The Molecular Hamiltonian 5.2 The Molecular Wavefunction 5.3 Covalent Bonds in Polyatomic Molecules 5.4 Non-Covalent Bonds 5.5 Nuclear Magnetic Resonance Spectroscopy 6 Molecular Symmetry 6.1 Group Theory 6.2 Symmetry Representations for Wavefunctions 6.3 Selection Rules 6.4 Selected Applications 7 Electronic States of Molecules 7.1 Molecular Orbital Configurations 7.2 Electronic States 7.3 Computational Methods for Molecules 7.4 Energetic Processes 8 Vibrational States of Molecules 8.1 The Vibrational Schrödinger Equation 8.2 Vibrational Energy Levels in Diatomics 8.3 Vibrations in Polyatomics 8.4 Spectroscopy of Vibrational States 9 Rotational States of Molecules 9.1 Rotations in Diatomics 9.2 Rotations in Polyatomics 9.3 Spectroscopy of Rotational States III Molecular Interactions 10 Intermolecular Forces 10.1 Intermolecular Potential Energy 10.2 Molecular Collisions 11 Nanoscale Chemical Structure 11.1 The Nano Scale 11.2 Clusters 11.3 Macromolecules 12 The Structure of Liquids 12.1 The Qualitative Nature of Liquids 12.2 Weakly Bonded Pure Liquids 12.3 Solvation 13 The Structure of Solids 13.1 Amorphous Solids, Polymers, and Crystals 13.2 Symmetry in Crystals 13.3 Bonding Mechanisms and Properties of Crystals 13.4 Wavefunctions and Energies of Solids

Physical Chemistry

Product form

£125.41

Includes FREE delivery

Order before 4pm tomorrow for delivery by Tue 6 Jan 2026.

A Hardback by Andrew Cooksy

Out of stock


    View other formats and editions of Physical Chemistry by Andrew Cooksy

    Publisher: Pearson Education
    Publication Date: 1/4/2013 12:00:00 AM
    ISBN13: 9780321814166, 978-0321814166
    ISBN10: 0321814169

    Description

    Book Synopsis


    Table of Contents
    Quantum Chemistry and Molecular Interactions A Introduction: Tools from Math and Physics A.1 Mathematics A.2 Classical physics I Atomic Structure 1 Classical and Quantum Mechanics 1.1 Introduction to the Text 1.2 The Classical World 1.3 The Quantum World 1.4 One-Electron Atoms 1.5 Merging the Classical and Quantum Worlds 2 The Schrödinger Equation 2.1 Mathematical Tools of Quantum Mechanics 2.2 Fundamental Examples 3 One-Electron Atoms 3.1 Solving the One-Electron Atom Schrödinger Equation 3.2 The One-Electron Atom Orbital Wavefunctions 3.3 Electric Dipole Interactions 3.4 Magnetic Dipole Interactions 4 Many-Electron Atoms 4.1 Many-Electron Spatial Wavefunctions 4.2 Approximate Solution to the Schrodinger Equation 4.3 Spin Wavefunctions and Symmetrization 4.4 Vector Model of the Many-Electron Atom 4.5 Periodicity of the Elements 4.6 Atomic Structure: The Key to Chemistry II Molecular Structure 5 Chemical Bonds 5.1 The Molecular Hamiltonian 5.2 The Molecular Wavefunction 5.3 Covalent Bonds in Polyatomic Molecules 5.4 Non-Covalent Bonds 5.5 Nuclear Magnetic Resonance Spectroscopy 6 Molecular Symmetry 6.1 Group Theory 6.2 Symmetry Representations for Wavefunctions 6.3 Selection Rules 6.4 Selected Applications 7 Electronic States of Molecules 7.1 Molecular Orbital Configurations 7.2 Electronic States 7.3 Computational Methods for Molecules 7.4 Energetic Processes 8 Vibrational States of Molecules 8.1 The Vibrational Schrödinger Equation 8.2 Vibrational Energy Levels in Diatomics 8.3 Vibrations in Polyatomics 8.4 Spectroscopy of Vibrational States 9 Rotational States of Molecules 9.1 Rotations in Diatomics 9.2 Rotations in Polyatomics 9.3 Spectroscopy of Rotational States III Molecular Interactions 10 Intermolecular Forces 10.1 Intermolecular Potential Energy 10.2 Molecular Collisions 11 Nanoscale Chemical Structure 11.1 The Nano Scale 11.2 Clusters 11.3 Macromolecules 12 The Structure of Liquids 12.1 The Qualitative Nature of Liquids 12.2 Weakly Bonded Pure Liquids 12.3 Solvation 13 The Structure of Solids 13.1 Amorphous Solids, Polymers, and Crystals 13.2 Symmetry in Crystals 13.3 Bonding Mechanisms and Properties of Crystals 13.4 Wavefunctions and Energies of Solids

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account