Description
Book SynopsisPhenomenology, Logic, and the Philosophy of Mathematics, first published in 2005, is about logic, mathematical knowledge and mathematical objects. It is concerned with the role of reason and intuition in the exact sciences and it analyzes many of the central positions in the philosophy of logic and philosophy of mathematics: platonism, nominalism, intuitionism, formalism, pragmatism, and others.
Table of ContentsPart I. Reason, Science, and Mathematics: 1. Science as a triumph of the human spirit and science in crisis: Husserl and the Fortunes of Reason; 2. Mathematics and transcendental phenomenology; Part II. Kurt Godel, Phenomenology and the Philosophy of Mathematics: 3. Kurt Godel and phenomenology; 4. Godel's philosophical remarks on mathematics and logic; 5. Godel's path from the incompleteness theorems (1931) to Phenomenology (1961); 6. Godel and the intuition of concepts; 7. Godel and Quine on meaning and mathematics; 8. Maddy on realism in mathematics; 9. Penrose and the view that minds are not machines; Part III. Constructivism, Fulfilled Intentions, and Origins: 10. Intuitionism, meaning theory and cognition; 11. The philosophical background of Weyl's mathematical constructivism; 12. What is a proof?; 13. Phenomenology and mathematical knowledge; 14. Logicism, impredicativity, formalism; 15. The philosophy of arithmetic: Frege and Husserl.