Description

Book Synopsis
The Dirichlet space is one of the three fundamental Hilbert spaces of holomorphic functions on the unit disk. It boasts a rich and beautiful theory, yet at the same time remains a source of challenging open problems and a subject of active mathematical research. This book is the first systematic account of the Dirichlet space, assembling results previously only found in scattered research articles, and improving upon many of the proofs. Topics treated include: the Douglas and Carleson formulas for the Dirichlet integral, reproducing kernels, boundary behaviour and capacity, zero sets and uniqueness sets, multipliers, interpolation, Carleson measures, composition operators, local Dirichlet spaces, shift-invariant subspaces, and cyclicity. Special features include a self-contained treatment of capacity, including the strong-type inequality. The book will be valuable to researchers in function theory, and with over 100 exercises it is also suitable for self-study by graduate students.

Table of Contents
Preface; 1. Basic notions; 2. Capacity; 3. Boundary behavior; 4. Zero sets; 5. Multipliers; 6. Conformal invariance; 7. Harmonically weighted Dirichlet spaces; 8. Invariant subspaces; 9. Cyclicity; Appendix A. Hardy spaces; Appendix B. The Hardy–Littlewood maximal function; Appendix C. Positive definite matrices; Appendix D. Regularization and the rising-sun lemma; References; Index of notation; Index.

Pericles Prince of Tyre The New Cambridge

Product form

£57.59

Includes FREE delivery

RRP £63.99 – you save £6.40 (10%)

Order before 4pm tomorrow for delivery by Fri 9 Jan 2026.

A Hardback by Omar El-Fallah, Karim Kellay, Javad Mashreghi

1 in stock


    View other formats and editions of Pericles Prince of Tyre The New Cambridge by Omar El-Fallah

    Publisher: Cambridge University Press
    Publication Date: 1/16/2014 12:00:00 AM
    ISBN13: 9781107047525, 978-1107047525
    ISBN10: 1107047528

    Description

    Book Synopsis
    The Dirichlet space is one of the three fundamental Hilbert spaces of holomorphic functions on the unit disk. It boasts a rich and beautiful theory, yet at the same time remains a source of challenging open problems and a subject of active mathematical research. This book is the first systematic account of the Dirichlet space, assembling results previously only found in scattered research articles, and improving upon many of the proofs. Topics treated include: the Douglas and Carleson formulas for the Dirichlet integral, reproducing kernels, boundary behaviour and capacity, zero sets and uniqueness sets, multipliers, interpolation, Carleson measures, composition operators, local Dirichlet spaces, shift-invariant subspaces, and cyclicity. Special features include a self-contained treatment of capacity, including the strong-type inequality. The book will be valuable to researchers in function theory, and with over 100 exercises it is also suitable for self-study by graduate students.

    Table of Contents
    Preface; 1. Basic notions; 2. Capacity; 3. Boundary behavior; 4. Zero sets; 5. Multipliers; 6. Conformal invariance; 7. Harmonically weighted Dirichlet spaces; 8. Invariant subspaces; 9. Cyclicity; Appendix A. Hardy spaces; Appendix B. The Hardy–Littlewood maximal function; Appendix C. Positive definite matrices; Appendix D. Regularization and the rising-sun lemma; References; Index of notation; Index.

    Recently viewed products

    © 2026 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account