Description

Book Synopsis

Dieses Lehrbuch gibt eine Einführung in die partiellen Differenzialgleichungen. Wir beginnen mit einigen ganz konkreten Beispielen aus den Natur-, Ingenieur und Wirtschaftswissenschaften. Danach werden elementare Lösungsmethoden dargestellt, z.B. für die Black-Scholes-Gleichung aus der Finanzmathematik. Schließlich wird die analytische Untersuchung großer Klassen von partiellen Differenzialgleichungen dargestellt, wobei Hilbert-Raum-Methoden im Mittelpunkt stehen.

Numerische Verfahren werden eingeführt und mit konkreten Beispielen behandelt.

Zu jedem Kapitel finden sich Übungsaufgaben, mit deren Hilfe der Stoff eingeübt und vertieft werden kann.

Dieses Buch richtet sich an Studierende im Bachelor oder im ersten Master-Jahr sowohl in der (Wirtschafts-)Mathematik als auch in den Studiengängen Informatik, Physik und Ingenieurwissenschaften.

Die 2. Auflage ist vollständig durchgesehen, an vielen Stellen didaktisch weiter optimiert und um die Beschreibung variationeller Methoden in Raum und Zeit für zeitabhängige Probleme ergänzt.

Stimme zur ersten Auflage

Auf dieses Lehrbuch haben wir gewartet.

Prof. Dr. Andreas Kleinert in zbMATH




Table of Contents
1 Modellierung, oder wie man auf eine Differenzialgleichung kommt 1.1 Modellierung mit Differenzialgleichungen 1.2 Transport-Prozesse 1.3 Diffusion 1.4 Die Wellengleichung 1.5 Die Black-Scholes-Gleichung 1.6 Jetzt wird es mehrdimensional 1.7 Es gibt noch mehr 1.8 Klassifikation partieller Differenzialgleichungen 1.9 Aufgaben 2 Kategorisierung und Charakteristiken 2.1 Charakteristiken von Anfangswertproblemen auf R 2.2 Gleichungen zweiter Ordnung 2.3 Anfangs- und Randwerte 2.4 Nichtlineare Gleichungen zweiter Ordnung 2.5 Gleichungen höherer Ordnung und Systeme 2.6 Aufgaben 3 Elementare Lösungsmethoden 3.1 Variablentransformation für die Transportgleichung 3.2 Trennung der Variablen am Beispiel der Wellengleichung 3.3 Fourier-Reihen 3.4 Die Laplace-Gleichung 3.5 Die Wärmeleitungsgleichung 3.6 Die Black-Scholes-Gleichung 3.7 Integral-Transformationen 3.8 Aufgaben 4 Hilbert-Räume 4.1 Unitäre Räume 4.2 Orthonormalbasen 4.3 Vollständigkeit 4.4 Orthogonale Projektionen 4.5 Linearformen und Bilinearformen 4.6 Schwache Konvergenz 4.7 Stetige und kompakte Operatoren 4.8 Der Spektralsatz 4.9 Aufgaben 5 Sobolev-Räume und Randwertaufgaben in einer Dimension 5.1 Sobolev-Räume in einer Variablen 5.2 Randwertprobleme auf einem Intervall 5.3 Aufgaben 6 Sobolev-Räume und Hilbert-Raum-Methoden für elliptische Gleichungen 6.1 Regularisierung 6.2 Sobolev-Räume 6.3 Der Raum H1 6.4 Die Poisson-Gleichung mit Dirichlet-Randbedingungen 6.5 Sobolev-Räume und Fourier-Transformation 6.6 LokaleRegularität 6.7 Die Poisson-Gleichung mit inhomogenen Dirichlet-Randbedingungen 6.8 Das Dirichlet-Problem 6.9 Elliptische Gleichungen mit Dirichlet-Randbedingung 6.10 H2-Regularität 6.11 Kommentare zu Kapitel 6 6.12 Aufgaben 7 Elliptische Gleichungen mit Neumann- und Robin-Randbedingungen 7.1 Der Satz von Gauß 7.2 Beweis des Satzes von Gauß 7.3 Die Fortsetzungseigenschaft 7.4 Die Poisson-Gleichung mit Neumann-Randbedingungen 7.5 Der Spursatz und Robin-Randbedingungen 7.6 Kommentare zu Kapitel 7 7.7 Aufgaben 8 Spektralzerlegung und Evolutionsgleichungen 8.1 Ein vektorwertiges Anfangswertproblem 8.2 Die Wärmeleitungsgleichung mit Dirichlet-Randbedingungen 8.3 Die Wärmeleitungsgleichung mit Robin-Randbedingungen 8.4 Die Wellengleichung 8.5 Aufgaben 9 Numerische Verfahren 9.1 Finite Differenzen 9.2 Finite Elemente 9.3 Ergänzungen und Erweiterungen 9.4 Parabolische Probleme 9.5 Aufgaben 10 Maple, oder manchmal hilft der Computer 10.1 Maple® 10.2 Aufgaben

Partielle Differenzialgleichungen: Eine

Product form

£29.99

Includes FREE delivery

Order before 4pm today for delivery by Fri 19 Dec 2025.

A Paperback / softback by Wolfgang Arendt, Karsten Urban

1 in stock


    View other formats and editions of Partielle Differenzialgleichungen: Eine by Wolfgang Arendt

    Publisher: Springer Fachmedien Wiesbaden
    Publication Date: 24/01/2019
    ISBN13: 9783662583210, 978-3662583210
    ISBN10: 3662583216

    Description

    Book Synopsis

    Dieses Lehrbuch gibt eine Einführung in die partiellen Differenzialgleichungen. Wir beginnen mit einigen ganz konkreten Beispielen aus den Natur-, Ingenieur und Wirtschaftswissenschaften. Danach werden elementare Lösungsmethoden dargestellt, z.B. für die Black-Scholes-Gleichung aus der Finanzmathematik. Schließlich wird die analytische Untersuchung großer Klassen von partiellen Differenzialgleichungen dargestellt, wobei Hilbert-Raum-Methoden im Mittelpunkt stehen.

    Numerische Verfahren werden eingeführt und mit konkreten Beispielen behandelt.

    Zu jedem Kapitel finden sich Übungsaufgaben, mit deren Hilfe der Stoff eingeübt und vertieft werden kann.

    Dieses Buch richtet sich an Studierende im Bachelor oder im ersten Master-Jahr sowohl in der (Wirtschafts-)Mathematik als auch in den Studiengängen Informatik, Physik und Ingenieurwissenschaften.

    Die 2. Auflage ist vollständig durchgesehen, an vielen Stellen didaktisch weiter optimiert und um die Beschreibung variationeller Methoden in Raum und Zeit für zeitabhängige Probleme ergänzt.

    Stimme zur ersten Auflage

    Auf dieses Lehrbuch haben wir gewartet.

    Prof. Dr. Andreas Kleinert in zbMATH




    Table of Contents
    1 Modellierung, oder wie man auf eine Differenzialgleichung kommt 1.1 Modellierung mit Differenzialgleichungen 1.2 Transport-Prozesse 1.3 Diffusion 1.4 Die Wellengleichung 1.5 Die Black-Scholes-Gleichung 1.6 Jetzt wird es mehrdimensional 1.7 Es gibt noch mehr 1.8 Klassifikation partieller Differenzialgleichungen 1.9 Aufgaben 2 Kategorisierung und Charakteristiken 2.1 Charakteristiken von Anfangswertproblemen auf R 2.2 Gleichungen zweiter Ordnung 2.3 Anfangs- und Randwerte 2.4 Nichtlineare Gleichungen zweiter Ordnung 2.5 Gleichungen höherer Ordnung und Systeme 2.6 Aufgaben 3 Elementare Lösungsmethoden 3.1 Variablentransformation für die Transportgleichung 3.2 Trennung der Variablen am Beispiel der Wellengleichung 3.3 Fourier-Reihen 3.4 Die Laplace-Gleichung 3.5 Die Wärmeleitungsgleichung 3.6 Die Black-Scholes-Gleichung 3.7 Integral-Transformationen 3.8 Aufgaben 4 Hilbert-Räume 4.1 Unitäre Räume 4.2 Orthonormalbasen 4.3 Vollständigkeit 4.4 Orthogonale Projektionen 4.5 Linearformen und Bilinearformen 4.6 Schwache Konvergenz 4.7 Stetige und kompakte Operatoren 4.8 Der Spektralsatz 4.9 Aufgaben 5 Sobolev-Räume und Randwertaufgaben in einer Dimension 5.1 Sobolev-Räume in einer Variablen 5.2 Randwertprobleme auf einem Intervall 5.3 Aufgaben 6 Sobolev-Räume und Hilbert-Raum-Methoden für elliptische Gleichungen 6.1 Regularisierung 6.2 Sobolev-Räume 6.3 Der Raum H1 6.4 Die Poisson-Gleichung mit Dirichlet-Randbedingungen 6.5 Sobolev-Räume und Fourier-Transformation 6.6 LokaleRegularität 6.7 Die Poisson-Gleichung mit inhomogenen Dirichlet-Randbedingungen 6.8 Das Dirichlet-Problem 6.9 Elliptische Gleichungen mit Dirichlet-Randbedingung 6.10 H2-Regularität 6.11 Kommentare zu Kapitel 6 6.12 Aufgaben 7 Elliptische Gleichungen mit Neumann- und Robin-Randbedingungen 7.1 Der Satz von Gauß 7.2 Beweis des Satzes von Gauß 7.3 Die Fortsetzungseigenschaft 7.4 Die Poisson-Gleichung mit Neumann-Randbedingungen 7.5 Der Spursatz und Robin-Randbedingungen 7.6 Kommentare zu Kapitel 7 7.7 Aufgaben 8 Spektralzerlegung und Evolutionsgleichungen 8.1 Ein vektorwertiges Anfangswertproblem 8.2 Die Wärmeleitungsgleichung mit Dirichlet-Randbedingungen 8.3 Die Wärmeleitungsgleichung mit Robin-Randbedingungen 8.4 Die Wellengleichung 8.5 Aufgaben 9 Numerische Verfahren 9.1 Finite Differenzen 9.2 Finite Elemente 9.3 Ergänzungen und Erweiterungen 9.4 Parabolische Probleme 9.5 Aufgaben 10 Maple, oder manchmal hilft der Computer 10.1 Maple® 10.2 Aufgaben

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account