Description

Book Synopsis

Daniel Chen is a graduate student in the Interdisciplinary PhD program in Genetics, Bioinformatics & Computational Biology (GBCB) at Virginia Polytechnic Institute and State University (Virginia Tech). He is involved with Software Carpentry as an instructor, Mentoring Committee Member, and currently serves as the Assessment Committee Chair. He completed his Masters in Public Health at Columbia University Mailman School of Public Health in Epidemiology with a certificate in Advanced Epidemiology and currently extending his Master's thesis work in the Social and Decision Analytics Laboratory under the Virginia Bioinformatics Institute on attitude diffusion in social networks.



Table of Contents

Foreword by Anne M. Brown xxiii

Foreword by Jared Lander xxv

Preface xxvii

Changes in the Second Edition xxxix

Part I: Introduction 1

Chapter 1. Pandas DataFrame Basics 3

Learning Objectives 3

1.1 Introduction 3

1.2 Load Your First Data Set 4

1.3 Look at Columns, Rows, and Cells 6

1.4 Grouped and Aggregated Calculations 23

1.5 Basic Plot 27

Conclusion 28

Chapter 2. Pandas Data Structures Basics 31

Learning Objectives 31

2.1 Create Your Own Data 31

2.2 The Series 33

2.3 The DataFrame 42

2.4 Making Changes to Series and DataFrames 45

2.5 Exporting and Importing Data 52

Conclusion 63

Chapter 3. Plotting Basics 65

Learning Objectives 65

3.1 Why Visualize Data? 65

3.2 Matplotlib Basics 66

3.3 Statistical Graphics Using matplotlib 72

3.4 Seaborn 78

3.5 Pandas Plotting Method 111

Conclusion 115

Chapter 4. Tidy Data 117

Learning Objectives 117

Note About This Chapter 117

4.1 Columns Contain Values, Not Variables 118

4.2 Columns Contain Multiple Variables 122

4.3 Variables in Both Rows and Columns 126

Conclusion 129

Chapter 5. Apply Functions 131

Learning Objectives 131

Note About This Chapter 131

5.1 Primer on Functions 131

5.2 Apply (Basics) 133

5.3 Vectorized Functions 138

5.4 Lambda Functions (Anonymous Functions) 141

Conclusion 142

Part II: Data Processing 143

Chapter 6. Data Assembly 145

Learning Objectives 145

6.1 Combine Data Sets 145

6.2 Concatenation 146

6.3 Observational Units Across Multiple Tables 154

6.4 Merge Multiple Data Sets 160

Conclusion 167

Chapter 7. Data Normalization 169

Learning Objectives 169

7.1 Multiple Observational Units in a Table (Normalization) 169

Conclusion 173

Chapter 8. Groupby Operations: Split-Apply-Combine 175

Learning Objectives 175

8.1 Aggregate 176

8.2 Transform 184

8.3 Filter 188

8.4 The pandas.core.groupby.DataFrameGroupBy object 190

8.5 Working with a MultiIndex 195

Conclusion 199

Part III: Data Types 203

Chapter 9. Missing Data 203

Learning Objectives 203

9.1 What Is a NaN Value? 203

9.2 Where Do Missing Values Come From? 205

9.3 Working with Missing Data 210

9.4 Pandas Built-In NA Missing 216

Conclusion 218

Chapter 10. Data Types 219

Learning Objectives 219

10.1 Data Types 219

10.2 Converting Types 220

10.3 Categorical Data 225

Conclusion 227

Chapter 11. Strings and Text Data 229

Introduction 229

Learning Objectives 229

11.1 Strings 229

11.2 String Methods 233

11.3 More String Methods 234

11.4 String Formatting (F-Strings) 236

11.5 Regular Expressions (RegEx) 239

11.6 The regex Library 247

Conclusion 247

Chapter 12. Dates and Times 249

Learning Objectives 249

12.1 Python's datetime Object 249

12.2 Converting to datetime 250

12.3 Loading Data That Include Dates 253

12.4 Extracting Date Components 254

12.5 Date Calculations and Timedeltas 257

12.6 Datetime Methods 259

12.7 Getting Stock Data 261

12.8 Subsetting Data Based on Dates 263

12.9 Date Ranges 266

12.10 Shifting Values 270

12.11 Resampling 276

12.12 Time Zones 278

12.13 Arrow for Better Dates and Times 280

Conclusion 280

Part IV: Data Modeling 281

Chapter 13. Linear Regression (Continuous Outcome Variable) 283

13.1 Simple Linear Regression 283

13.2 Multiple Regression 287

13.3 Models with Categorical Variables 289

13.4 One-Hot Encoding in scikit-learn with Transformer Pipelines 294

Conclusion 296

Chapter 14. Generalized Linear Models 297

About This Chapter 297

14.1 Logistic Regression (Binary Outcome Variable) 297

14.2 Poisson Regression (Count Outcome Variable) 304

14.3 More Generalized Linear Models 308

Conclusion 309

Chapter 15. Survival Analysis 311

15.1 Survival Data 311

15.2 Kaplan Meier Curves 312

15.3 Cox Proportional Hazard Model 314

Conclusion 317

Chapter 16. Model Diagnostics 319

16.1 Residuals 319

16.2 Comparing Multiple Models 324

16.3 k-Fold Cross-Validation 329

Conclusion 334

Chapter 17. Regularization 335

17.1 Why Regularize? 335

17.2 LASSO Regression 337

17.3 Ridge Regression 338

17.4 Elastic Net 340

17.5 Cross-Validation 341

Conclusion 343

Chapter 18. Clustering 345

18.1 k-Means 345

18.2 Hierarchical Clustering 351

Conclusion 356

Part V. Conclusion 357

Chapter 19. Life Outside of Pandas 359

19.1 The (Scientific) Computing Stack 359

19.2 Performance 360

19.3 Dask 360

19.4 Siuba 360

19.5 Ibis 361

19.6 Polars 361

19.7 PyJanitor 361

19.8 Pandera 361

19.9 Machine Learning 361

19.10 Publishing 362

19.11 Dashboards 362

Conclusion 362

Chapter 20. It's Dangerous To Go Alone! 363

20.1 Local Meetups 363

20.2 Conferences 363

20.3 The Carpentries 364

20.4 Podcasts 364

20.5 Other Resources 365

Conclusion 365

Appendices 367

A. Concept Maps 369
B. Installation and Setup 373
C. Command Line 377
D. Project Templates 379
E. Using Python 381
F. Working Directories 383
G. Environments 385
H. Install Packages 389
I. Importing Libraries 391
J. Code Style 393
K. Containers: Lists, Tuples, and Dictionaries 395
L. Slice Values 399
M. Loops 401
N. Comprehensions 403
O. Functions 405
P. Ranges and Generators 409
Q. Multiple Assignment 413
R. Numpy ndarray 415
S. Classes 417
T. SettingWithCopyWarning 419
U. Method Chaining 423
V. Timing Code 427
W. String Formatting 429
X. Conditionals (if-elif-else) 433
Y. New York ACS Logistic Regression Example 435
Z. Replicating Results in R 443

Index 451

Pandas for Everyone

Product form

£34.19

Includes FREE delivery

RRP £37.99 – you save £3.80 (10%)

Order before 4pm today for delivery by Tue 23 Dec 2025.

A Paperback / softback by Daniel Chen

15 in stock


    View other formats and editions of Pandas for Everyone by Daniel Chen

    Publisher: Pearson Education (US)
    Publication Date: 17/02/2023
    ISBN13: 9780137891153, 978-0137891153
    ISBN10: 0137891156

    Description

    Book Synopsis

    Daniel Chen is a graduate student in the Interdisciplinary PhD program in Genetics, Bioinformatics & Computational Biology (GBCB) at Virginia Polytechnic Institute and State University (Virginia Tech). He is involved with Software Carpentry as an instructor, Mentoring Committee Member, and currently serves as the Assessment Committee Chair. He completed his Masters in Public Health at Columbia University Mailman School of Public Health in Epidemiology with a certificate in Advanced Epidemiology and currently extending his Master's thesis work in the Social and Decision Analytics Laboratory under the Virginia Bioinformatics Institute on attitude diffusion in social networks.



    Table of Contents

    Foreword by Anne M. Brown xxiii

    Foreword by Jared Lander xxv

    Preface xxvii

    Changes in the Second Edition xxxix

    Part I: Introduction 1

    Chapter 1. Pandas DataFrame Basics 3

    Learning Objectives 3

    1.1 Introduction 3

    1.2 Load Your First Data Set 4

    1.3 Look at Columns, Rows, and Cells 6

    1.4 Grouped and Aggregated Calculations 23

    1.5 Basic Plot 27

    Conclusion 28

    Chapter 2. Pandas Data Structures Basics 31

    Learning Objectives 31

    2.1 Create Your Own Data 31

    2.2 The Series 33

    2.3 The DataFrame 42

    2.4 Making Changes to Series and DataFrames 45

    2.5 Exporting and Importing Data 52

    Conclusion 63

    Chapter 3. Plotting Basics 65

    Learning Objectives 65

    3.1 Why Visualize Data? 65

    3.2 Matplotlib Basics 66

    3.3 Statistical Graphics Using matplotlib 72

    3.4 Seaborn 78

    3.5 Pandas Plotting Method 111

    Conclusion 115

    Chapter 4. Tidy Data 117

    Learning Objectives 117

    Note About This Chapter 117

    4.1 Columns Contain Values, Not Variables 118

    4.2 Columns Contain Multiple Variables 122

    4.3 Variables in Both Rows and Columns 126

    Conclusion 129

    Chapter 5. Apply Functions 131

    Learning Objectives 131

    Note About This Chapter 131

    5.1 Primer on Functions 131

    5.2 Apply (Basics) 133

    5.3 Vectorized Functions 138

    5.4 Lambda Functions (Anonymous Functions) 141

    Conclusion 142

    Part II: Data Processing 143

    Chapter 6. Data Assembly 145

    Learning Objectives 145

    6.1 Combine Data Sets 145

    6.2 Concatenation 146

    6.3 Observational Units Across Multiple Tables 154

    6.4 Merge Multiple Data Sets 160

    Conclusion 167

    Chapter 7. Data Normalization 169

    Learning Objectives 169

    7.1 Multiple Observational Units in a Table (Normalization) 169

    Conclusion 173

    Chapter 8. Groupby Operations: Split-Apply-Combine 175

    Learning Objectives 175

    8.1 Aggregate 176

    8.2 Transform 184

    8.3 Filter 188

    8.4 The pandas.core.groupby.DataFrameGroupBy object 190

    8.5 Working with a MultiIndex 195

    Conclusion 199

    Part III: Data Types 203

    Chapter 9. Missing Data 203

    Learning Objectives 203

    9.1 What Is a NaN Value? 203

    9.2 Where Do Missing Values Come From? 205

    9.3 Working with Missing Data 210

    9.4 Pandas Built-In NA Missing 216

    Conclusion 218

    Chapter 10. Data Types 219

    Learning Objectives 219

    10.1 Data Types 219

    10.2 Converting Types 220

    10.3 Categorical Data 225

    Conclusion 227

    Chapter 11. Strings and Text Data 229

    Introduction 229

    Learning Objectives 229

    11.1 Strings 229

    11.2 String Methods 233

    11.3 More String Methods 234

    11.4 String Formatting (F-Strings) 236

    11.5 Regular Expressions (RegEx) 239

    11.6 The regex Library 247

    Conclusion 247

    Chapter 12. Dates and Times 249

    Learning Objectives 249

    12.1 Python's datetime Object 249

    12.2 Converting to datetime 250

    12.3 Loading Data That Include Dates 253

    12.4 Extracting Date Components 254

    12.5 Date Calculations and Timedeltas 257

    12.6 Datetime Methods 259

    12.7 Getting Stock Data 261

    12.8 Subsetting Data Based on Dates 263

    12.9 Date Ranges 266

    12.10 Shifting Values 270

    12.11 Resampling 276

    12.12 Time Zones 278

    12.13 Arrow for Better Dates and Times 280

    Conclusion 280

    Part IV: Data Modeling 281

    Chapter 13. Linear Regression (Continuous Outcome Variable) 283

    13.1 Simple Linear Regression 283

    13.2 Multiple Regression 287

    13.3 Models with Categorical Variables 289

    13.4 One-Hot Encoding in scikit-learn with Transformer Pipelines 294

    Conclusion 296

    Chapter 14. Generalized Linear Models 297

    About This Chapter 297

    14.1 Logistic Regression (Binary Outcome Variable) 297

    14.2 Poisson Regression (Count Outcome Variable) 304

    14.3 More Generalized Linear Models 308

    Conclusion 309

    Chapter 15. Survival Analysis 311

    15.1 Survival Data 311

    15.2 Kaplan Meier Curves 312

    15.3 Cox Proportional Hazard Model 314

    Conclusion 317

    Chapter 16. Model Diagnostics 319

    16.1 Residuals 319

    16.2 Comparing Multiple Models 324

    16.3 k-Fold Cross-Validation 329

    Conclusion 334

    Chapter 17. Regularization 335

    17.1 Why Regularize? 335

    17.2 LASSO Regression 337

    17.3 Ridge Regression 338

    17.4 Elastic Net 340

    17.5 Cross-Validation 341

    Conclusion 343

    Chapter 18. Clustering 345

    18.1 k-Means 345

    18.2 Hierarchical Clustering 351

    Conclusion 356

    Part V. Conclusion 357

    Chapter 19. Life Outside of Pandas 359

    19.1 The (Scientific) Computing Stack 359

    19.2 Performance 360

    19.3 Dask 360

    19.4 Siuba 360

    19.5 Ibis 361

    19.6 Polars 361

    19.7 PyJanitor 361

    19.8 Pandera 361

    19.9 Machine Learning 361

    19.10 Publishing 362

    19.11 Dashboards 362

    Conclusion 362

    Chapter 20. It's Dangerous To Go Alone! 363

    20.1 Local Meetups 363

    20.2 Conferences 363

    20.3 The Carpentries 364

    20.4 Podcasts 364

    20.5 Other Resources 365

    Conclusion 365

    Appendices 367

    A. Concept Maps 369
    B. Installation and Setup 373
    C. Command Line 377
    D. Project Templates 379
    E. Using Python 381
    F. Working Directories 383
    G. Environments 385
    H. Install Packages 389
    I. Importing Libraries 391
    J. Code Style 393
    K. Containers: Lists, Tuples, and Dictionaries 395
    L. Slice Values 399
    M. Loops 401
    N. Comprehensions 403
    O. Functions 405
    P. Ranges and Generators 409
    Q. Multiple Assignment 413
    R. Numpy ndarray 415
    S. Classes 417
    T. SettingWithCopyWarning 419
    U. Method Chaining 423
    V. Timing Code 427
    W. String Formatting 429
    X. Conditionals (if-elif-else) 433
    Y. New York ACS Logistic Regression Example 435
    Z. Replicating Results in R 443

    Index 451

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account