Description

Book Synopsis
This is a graduate-level introduction to the key ideas and theoretical foundation of the vibrant field of optimal mass transport in the Euclidean setting. Taking a pedagogical approach, it introduces concepts gradually and in an accessible way, while also remaining technically and conceptually complete.

Trade Review
'Francesco Maggi's book is a detailed and extremely well written explanation of the fascinating theory of Monge-Kantorovich optimal mass transfer. I especially recommend Part IV's discussion of the 'linear' cost problem and its subtle mathematical resolution.' Lawrence C. Evans, University of California, Berkeley
'Over the last three decades, optimal transport has revolutionized the mathematical analysis of inequalities, differential equations, dynamical systems, and their applications to physics, economics, and computer science. By exposing the interplay between the discrete and Euclidean settings, Maggi's book makes this development uniquely accessible to advanced undergraduates and mathematical researchers with a minimum of prerequisites. It includes the first textbook accounts of the localization technique known as needle decomposition and its solution to Monge's centuries old cutting and filling problem (1781). This book will be an indispensable tool for advanced undergraduates and mathematical researchers alike.' Robert McCann, University of Toronto

Table of Contents
Preface; Notation; Part I. The Kantorovich Problem: 1. An introduction to the Monge problem; 2. Discrete transport problems; 3. The Kantorovich problem; Part II. Solution of the Monge Problem with Quadratic Cost: the Brenier-McCann Theorem: 4. The Brenier theorem; 5. First order differentiability of convex functions; 6. The Brenier-McCann theorem; 7. Second order differentiability of convex functions; 8. The Monge-Ampère equation for Brenier maps; Part III. Applications to PDE and the Calculus of Variations and the Wasserstein Space: 9. Isoperimetric and Sobolev inequalities in sharp form; 10. Displacement convexity and equilibrium of gases; 11. The Wasserstein distance W2 on P2(Rn); 12. Gradient flows and the minimizing movements scheme; 13. The Fokker-Planck equation in the Wasserstein space; 14. The Euler equations and isochoric projections; 15. Action minimization, Eulerian velocities and Otto's calculus; Part IV. Solution of the Monge Problem with Linear Cost: the Sudakov Theorem: 16. Optimal transport maps on the real line; 17. Disintegration; 18. Solution to the Monge problem with linear cost; 19. An introduction to the needle decomposition method; Appendix A: Radon measures on Rn and related topics; Appendix B: Bibliographical Notes; Bibliography; Index.

Optimal Mass Transport on Euclidean Spaces

Product form

£47.49

Includes FREE delivery

RRP £49.99 – you save £2.50 (5%)

Order before 4pm today for delivery by Sat 13 Dec 2025.

A Hardback by Francesco Maggi

2 in stock


    View other formats and editions of Optimal Mass Transport on Euclidean Spaces by Francesco Maggi

    Publisher: Cambridge University Press
    Publication Date: 11/16/2023 12:00:00 AM
    ISBN13: 9781009179706, 978-1009179706
    ISBN10: 1009179705

    Description

    Book Synopsis
    This is a graduate-level introduction to the key ideas and theoretical foundation of the vibrant field of optimal mass transport in the Euclidean setting. Taking a pedagogical approach, it introduces concepts gradually and in an accessible way, while also remaining technically and conceptually complete.

    Trade Review
    'Francesco Maggi's book is a detailed and extremely well written explanation of the fascinating theory of Monge-Kantorovich optimal mass transfer. I especially recommend Part IV's discussion of the 'linear' cost problem and its subtle mathematical resolution.' Lawrence C. Evans, University of California, Berkeley
    'Over the last three decades, optimal transport has revolutionized the mathematical analysis of inequalities, differential equations, dynamical systems, and their applications to physics, economics, and computer science. By exposing the interplay between the discrete and Euclidean settings, Maggi's book makes this development uniquely accessible to advanced undergraduates and mathematical researchers with a minimum of prerequisites. It includes the first textbook accounts of the localization technique known as needle decomposition and its solution to Monge's centuries old cutting and filling problem (1781). This book will be an indispensable tool for advanced undergraduates and mathematical researchers alike.' Robert McCann, University of Toronto

    Table of Contents
    Preface; Notation; Part I. The Kantorovich Problem: 1. An introduction to the Monge problem; 2. Discrete transport problems; 3. The Kantorovich problem; Part II. Solution of the Monge Problem with Quadratic Cost: the Brenier-McCann Theorem: 4. The Brenier theorem; 5. First order differentiability of convex functions; 6. The Brenier-McCann theorem; 7. Second order differentiability of convex functions; 8. The Monge-Ampère equation for Brenier maps; Part III. Applications to PDE and the Calculus of Variations and the Wasserstein Space: 9. Isoperimetric and Sobolev inequalities in sharp form; 10. Displacement convexity and equilibrium of gases; 11. The Wasserstein distance W2 on P2(Rn); 12. Gradient flows and the minimizing movements scheme; 13. The Fokker-Planck equation in the Wasserstein space; 14. The Euler equations and isochoric projections; 15. Action minimization, Eulerian velocities and Otto's calculus; Part IV. Solution of the Monge Problem with Linear Cost: the Sudakov Theorem: 16. Optimal transport maps on the real line; 17. Disintegration; 18. Solution to the Monge problem with linear cost; 19. An introduction to the needle decomposition method; Appendix A: Radon measures on Rn and related topics; Appendix B: Bibliographical Notes; Bibliography; Index.

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account