Description

Book Synopsis
The intention of this book is to explain to a mathematician having no previous knowledge in this domain, what "noncommutative probability" is. So the first decision was not to concentrate on a special topic. For different people, the starting points of such a domain may be different. In what concerns this question, different variants are not discussed. One such variant comes from Quantum Physics. The motivations in this book are mainly mathematical; more precisely, they correspond to the desire of developing a probability theory in a new set-up and obtaining results analogous to the classical ones for the newly defined mathematical objects. Also different mathematical foundations of this domain were proposed. This book concentrates on one variant, which may be described as "von Neumann algebras". This is true also for the last chapter, if one looks at its ultimate aim. In the references there are some papers corresponding to other variants; we mention Gudder, S.P. &al (1978). Segal, I.E. (1965) also discusses "basic ideas".

Table of Contents
Preface. 1. Central limit theorem on L(H). 2. Probability theory on von Neumann algebras. 3. Free independence. 4. The Clifford algebra. 5. Stochastic integrals. 6. Conditional mean values. 7. Jordan algebras. References. Index.

Noncommutative Probability

Product form

£85.49

Includes FREE delivery

RRP £89.99 – you save £4.50 (5%)

Order before 4pm tomorrow for delivery by Thu 22 Jan 2026.

A Paperback by I. Cuculescu, A.G. Oprea

15 in stock


    View other formats and editions of Noncommutative Probability by I. Cuculescu

    Publisher: Springer
    Publication Date: 15/12/2010
    ISBN13: 9789048144709, 978-9048144709
    ISBN10: 9048144701

    Description

    Book Synopsis
    The intention of this book is to explain to a mathematician having no previous knowledge in this domain, what "noncommutative probability" is. So the first decision was not to concentrate on a special topic. For different people, the starting points of such a domain may be different. In what concerns this question, different variants are not discussed. One such variant comes from Quantum Physics. The motivations in this book are mainly mathematical; more precisely, they correspond to the desire of developing a probability theory in a new set-up and obtaining results analogous to the classical ones for the newly defined mathematical objects. Also different mathematical foundations of this domain were proposed. This book concentrates on one variant, which may be described as "von Neumann algebras". This is true also for the last chapter, if one looks at its ultimate aim. In the references there are some papers corresponding to other variants; we mention Gudder, S.P. &al (1978). Segal, I.E. (1965) also discusses "basic ideas".

    Table of Contents
    Preface. 1. Central limit theorem on L(H). 2. Probability theory on von Neumann algebras. 3. Free independence. 4. The Clifford algebra. 5. Stochastic integrals. 6. Conditional mean values. 7. Jordan algebras. References. Index.

    Recently viewed products

    © 2026 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account