Description

Book Synopsis

The energy crisis and pollution have posed significant risks to the environment, transportation, and economy over the last century. Thus, green energy becomes one of the critical global technologies and the use of nanomaterials in these technologies is an important and active research area. This book series presents the progress and opportunities in green energy sustainability. Developments in nanoscaled electrocatalysts, solid oxide and proton exchange membrane fuel cells, lithium ion batteries, and photovoltaic techniques comprise the area of energy storage and conversion. Developments in carbon dioxide (CO2) capture and hydrogen (H2) storage using tunable structured materials are discussed. Design and characterization of new nanoscaled materials with controllable particle size, structure, shape, porosity and band gap to enhance next generation energy systems are also included.

The technical topics covered in this series are metal organic frameworks, nanoparticles, nanocomposites, proton exchange membrane fuel cell catalysts, solid oxide fuel cell electrode design, trapping of carbon dioxide, and hydrogen gas storage.



Trade Review
“This volume brings together an interesting collection of articles covering mainly hydrogen PEM and SOFC technologies that will help build a more balanced understanding of the commercialisation and technical challenges arising from catalyst behaviour through to stack design.” (Rob Potter, Johnson Matthey Technology Review, Vol. 63 (4), 2019)

Table of Contents
Fuel Cell Technology - Policy, Features, and Applications: A Mini-Review.- Concept of Hydrogen Redox Electric Power and Hydrogen Energy Generators.- Evaluation of Cell Performance and Durability for Cathode Catalysts (Platinum Supported on Carbon Blacks or Conducting Ceramic Nanoparticles) During Simulated Fuel Cell Vehicle Operation: Start-up / Shutdown Cycles and Load Cycles.- Metal Carbonyl Cluster Complexes as Electrocatalysts for PEM Fuel Cells.- Non-Carbon Support Materials Used in Low-Temperature Fuel Cells.- Noble Metal Electrocatalysts for Anode and Cathode in Polymer Electrolyte Fuel Cells.- Nano Materials in Proton Exchange Membrane Fuel Cells.- Nanostructured Electrodes for High-Performing Solid Oxide Fuel Cells.- Modelling Analysis for Species, Pressure, and Temperature Regulation in Proton Exchange Membrane Fuel Cells.- The Application of Computational Thermodynamics to the Cathode-Electrolyte in Solid Oxide Fuel Cells.- Application of DFT Methods to Investigate Activity and Stability of Oxygen Reduction Reaction Electrocatalysts.- Hydrogen Fuel Cell as Range Extender in Electric Vehicle Powertrains: Fuel Optimization Strategies.- Totalized Hydrogen Energy Utilization System.- Influence of Air Impurities on the Performance of Nanostructured PEMFC Catalysts.- Solid-State Materials for Hydrogen Storage.- Stress Distribution in PEM Fuel Cells. Traditional Materials and New Trends.- Recent Progress on the Utilization of Nano Materials in Micro-Tubular Solid Oxide Fuel Cell.- Nanostructured Materials for Advanced Energy Conversion and Storage Devices: Safety Implications at End-of-Life Disposal.

Nanostructured Materials for Next-Generation

Product form

£189.99

Includes FREE delivery

RRP £199.99 – you save £10.00 (5%)

Order before 4pm tomorrow for delivery by Mon 5 Jan 2026.

A Paperback / softback by Fan Li, Sajid Bashir, Jingbo Louise Liu

Out of stock


    View other formats and editions of Nanostructured Materials for Next-Generation by Fan Li

    Publisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
    Publication Date: 01/02/2019
    ISBN13: 9783662585795, 978-3662585795
    ISBN10: 3662585790

    Description

    Book Synopsis

    The energy crisis and pollution have posed significant risks to the environment, transportation, and economy over the last century. Thus, green energy becomes one of the critical global technologies and the use of nanomaterials in these technologies is an important and active research area. This book series presents the progress and opportunities in green energy sustainability. Developments in nanoscaled electrocatalysts, solid oxide and proton exchange membrane fuel cells, lithium ion batteries, and photovoltaic techniques comprise the area of energy storage and conversion. Developments in carbon dioxide (CO2) capture and hydrogen (H2) storage using tunable structured materials are discussed. Design and characterization of new nanoscaled materials with controllable particle size, structure, shape, porosity and band gap to enhance next generation energy systems are also included.

    The technical topics covered in this series are metal organic frameworks, nanoparticles, nanocomposites, proton exchange membrane fuel cell catalysts, solid oxide fuel cell electrode design, trapping of carbon dioxide, and hydrogen gas storage.



    Trade Review
    “This volume brings together an interesting collection of articles covering mainly hydrogen PEM and SOFC technologies that will help build a more balanced understanding of the commercialisation and technical challenges arising from catalyst behaviour through to stack design.” (Rob Potter, Johnson Matthey Technology Review, Vol. 63 (4), 2019)

    Table of Contents
    Fuel Cell Technology - Policy, Features, and Applications: A Mini-Review.- Concept of Hydrogen Redox Electric Power and Hydrogen Energy Generators.- Evaluation of Cell Performance and Durability for Cathode Catalysts (Platinum Supported on Carbon Blacks or Conducting Ceramic Nanoparticles) During Simulated Fuel Cell Vehicle Operation: Start-up / Shutdown Cycles and Load Cycles.- Metal Carbonyl Cluster Complexes as Electrocatalysts for PEM Fuel Cells.- Non-Carbon Support Materials Used in Low-Temperature Fuel Cells.- Noble Metal Electrocatalysts for Anode and Cathode in Polymer Electrolyte Fuel Cells.- Nano Materials in Proton Exchange Membrane Fuel Cells.- Nanostructured Electrodes for High-Performing Solid Oxide Fuel Cells.- Modelling Analysis for Species, Pressure, and Temperature Regulation in Proton Exchange Membrane Fuel Cells.- The Application of Computational Thermodynamics to the Cathode-Electrolyte in Solid Oxide Fuel Cells.- Application of DFT Methods to Investigate Activity and Stability of Oxygen Reduction Reaction Electrocatalysts.- Hydrogen Fuel Cell as Range Extender in Electric Vehicle Powertrains: Fuel Optimization Strategies.- Totalized Hydrogen Energy Utilization System.- Influence of Air Impurities on the Performance of Nanostructured PEMFC Catalysts.- Solid-State Materials for Hydrogen Storage.- Stress Distribution in PEM Fuel Cells. Traditional Materials and New Trends.- Recent Progress on the Utilization of Nano Materials in Micro-Tubular Solid Oxide Fuel Cell.- Nanostructured Materials for Advanced Energy Conversion and Storage Devices: Safety Implications at End-of-Life Disposal.

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account