Description
Book SynopsisPublic key cryptography is a major interdisciplinary subject with many real-world applications. This book has been carefully written to communicate the major ideas and techniques in this subject to a wide readership. With numerous examples and exercises, it is suitable as a textbook for an advanced course or for self-study.
Trade Review'… the book gathers the main mathematical topics related to public key cryptography and provides an excellent source of information for both students and researchers interested in the field.' Juan Tena Ayuso, Zentralblatt MATH
Table of ContentsPreface; Acknowledgements; 1. Introduction; Part I. Background: 2. Basic algorithmic number theory; 3. Hash functions and MACs; Part II. Algebraic Groups: 4. Preliminary remarks on algebraic groups; 5. Varieties; 6. Tori, LUC and XTR; 7. Curves and divisor class groups; 8. Rational maps on curves and divisors; 9. Elliptic curves; 10. Hyperelliptic curves; Part III. Exponentiation, Factoring and Discrete Logarithms: 11. Basic algorithms for algebraic groups; 12. Primality testing and integer factorisation using algebraic groups; 13. Basic discrete logarithm algorithms; 14. Factoring and discrete logarithms using pseudorandom walks; 15. Factoring and discrete logarithms in subexponential time; Part IV. Lattices: 16. Lattices; 17. Lattice basis reduction; 18. Algorithms for the closest and shortest vector problems; 19. Coppersmith's method and related applications; Part V. Cryptography Related to Discrete Logarithms: 20. The Diffie–Hellman problem and cryptographic applications; 21. The Diffie–Hellman problem; 22. Digital signatures based on discrete logarithms; 23. Public key encryption based on discrete logarithms; Part VI. Cryptography Related to Integer Factorisation: 24. The RSA and Rabin cryptosystems; Part VII. Advanced Topics in Elliptic and Hyperelliptic Curves: 25. Isogenies of elliptic curves; 26. Pairings on elliptic curves; Appendix A. Background mathematics; References; Author index; Subject index.