Description

Book Synopsis
Public key cryptography is a major interdisciplinary subject with many real-world applications. This book has been carefully written to communicate the major ideas and techniques in this subject to a wide readership. With numerous examples and exercises, it is suitable as a textbook for an advanced course or for self-study.

Trade Review
'… the book gathers the main mathematical topics related to public key cryptography and provides an excellent source of information for both students and researchers interested in the field.' Juan Tena Ayuso, Zentralblatt MATH

Table of Contents
Preface; Acknowledgements; 1. Introduction; Part I. Background: 2. Basic algorithmic number theory; 3. Hash functions and MACs; Part II. Algebraic Groups: 4. Preliminary remarks on algebraic groups; 5. Varieties; 6. Tori, LUC and XTR; 7. Curves and divisor class groups; 8. Rational maps on curves and divisors; 9. Elliptic curves; 10. Hyperelliptic curves; Part III. Exponentiation, Factoring and Discrete Logarithms: 11. Basic algorithms for algebraic groups; 12. Primality testing and integer factorisation using algebraic groups; 13. Basic discrete logarithm algorithms; 14. Factoring and discrete logarithms using pseudorandom walks; 15. Factoring and discrete logarithms in subexponential time; Part IV. Lattices: 16. Lattices; 17. Lattice basis reduction; 18. Algorithms for the closest and shortest vector problems; 19. Coppersmith's method and related applications; Part V. Cryptography Related to Discrete Logarithms: 20. The Diffie–Hellman problem and cryptographic applications; 21. The Diffie–Hellman problem; 22. Digital signatures based on discrete logarithms; 23. Public key encryption based on discrete logarithms; Part VI. Cryptography Related to Integer Factorisation: 24. The RSA and Rabin cryptosystems; Part VII. Advanced Topics in Elliptic and Hyperelliptic Curves: 25. Isogenies of elliptic curves; 26. Pairings on elliptic curves; Appendix A. Background mathematics; References; Author index; Subject index.

Mathematics of Public Key Cryptography

Product form

£56.99

Includes FREE delivery

Order before 4pm tomorrow for delivery by Mon 19 Jan 2026.

A Hardback by Steven D. Galbraith

15 in stock


    View other formats and editions of Mathematics of Public Key Cryptography by Steven D. Galbraith

    Publisher: Cambridge University Press
    Publication Date: 3/15/2012 12:00:00 AM
    ISBN13: 9781107013926, 978-1107013926
    ISBN10: 1107013925

    Description

    Book Synopsis
    Public key cryptography is a major interdisciplinary subject with many real-world applications. This book has been carefully written to communicate the major ideas and techniques in this subject to a wide readership. With numerous examples and exercises, it is suitable as a textbook for an advanced course or for self-study.

    Trade Review
    '… the book gathers the main mathematical topics related to public key cryptography and provides an excellent source of information for both students and researchers interested in the field.' Juan Tena Ayuso, Zentralblatt MATH

    Table of Contents
    Preface; Acknowledgements; 1. Introduction; Part I. Background: 2. Basic algorithmic number theory; 3. Hash functions and MACs; Part II. Algebraic Groups: 4. Preliminary remarks on algebraic groups; 5. Varieties; 6. Tori, LUC and XTR; 7. Curves and divisor class groups; 8. Rational maps on curves and divisors; 9. Elliptic curves; 10. Hyperelliptic curves; Part III. Exponentiation, Factoring and Discrete Logarithms: 11. Basic algorithms for algebraic groups; 12. Primality testing and integer factorisation using algebraic groups; 13. Basic discrete logarithm algorithms; 14. Factoring and discrete logarithms using pseudorandom walks; 15. Factoring and discrete logarithms in subexponential time; Part IV. Lattices: 16. Lattices; 17. Lattice basis reduction; 18. Algorithms for the closest and shortest vector problems; 19. Coppersmith's method and related applications; Part V. Cryptography Related to Discrete Logarithms: 20. The Diffie–Hellman problem and cryptographic applications; 21. The Diffie–Hellman problem; 22. Digital signatures based on discrete logarithms; 23. Public key encryption based on discrete logarithms; Part VI. Cryptography Related to Integer Factorisation: 24. The RSA and Rabin cryptosystems; Part VII. Advanced Topics in Elliptic and Hyperelliptic Curves: 25. Isogenies of elliptic curves; 26. Pairings on elliptic curves; Appendix A. Background mathematics; References; Author index; Subject index.

    Recently viewed products

    © 2026 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account