Description

Book Synopsis

Mathematical Statistics: Basic Ideas and Selected Topics, Volume I, Second Edition presents fundamental, classical statistical concepts at the doctorate level. It covers estimation, prediction, testing, confidence sets, Bayesian analysis, and the general approach of decision theory. This edition gives careful proofs of major results and explains how the theory sheds light on the properties of practical methods.

The book first discusses non- and semiparametric models before covering parameters and parametric models. It then offers a detailed treatment of maximum likelihood estimates (MLEs) and examines the theory of testing and confidence regions, including optimality theory for estimation and elementary robustness considerations. It next presents basic asymptotic approximations with one-dimensional parameter models as examples. The book also describes inference in multivariate (multiparameter) models, exploring asymptotic normality and optimality of ML

Trade Review

"These methods are clearly explained by two outstanding statistical practitioners. … This book is well supported by the references, increasing its value as a guide through the often difficult world of mathematical statistics. …the authors consider key topics which include asymptotic efficiency in semiparametric models, semiparametric maximum likelihood estimation, proportional hazards regression models and Markov chain Monte Carlo methods."
— Receptos Pharmaceuticals, San Diego, 2016


"These methods are clearly explained by two outstanding statistical practitioners. … This book is well supported by the references, increasing its value as a guide through the often difficult world of mathematical statistics. …the authors consider key topics which include asymptotic efficiency in semiparametric models, semiparametric maximum likelihood estimation, proportional hazards regression models and Markov chain Monte Carlo methods."
— Receptos Pharmaceuticals, San Diego, 2016



Table of Contents

STATISTICAL MODELS, GOALS, AND PERFORMANCE CRITERIA. METHODS OF ESTIMATION. MEASURES OF PERFORMANCE. TESTING AND CONFIDENCE REGIONS. ASYMPTOTIC APPROXIMATIONS. INFERENCE IN THE MULTIPARAMETER CASE. APPENDICES. INDEX.

Mathematical Statistics

Product form

£92.14

Includes FREE delivery

RRP £96.99 – you save £4.85 (5%)

Order before 4pm today for delivery by Sat 13 Dec 2025.

A Hardback by Kjell A. Doksum, Kjell A. Doksum

1 in stock


    View other formats and editions of Mathematical Statistics by Kjell A. Doksum

    Publisher: Taylor & Francis Inc
    Publication Date: 1/13/2015 12:04:00 AM
    ISBN13: 9781498723800, 978-1498723800
    ISBN10: 1498723802

    Description

    Book Synopsis

    Mathematical Statistics: Basic Ideas and Selected Topics, Volume I, Second Edition presents fundamental, classical statistical concepts at the doctorate level. It covers estimation, prediction, testing, confidence sets, Bayesian analysis, and the general approach of decision theory. This edition gives careful proofs of major results and explains how the theory sheds light on the properties of practical methods.

    The book first discusses non- and semiparametric models before covering parameters and parametric models. It then offers a detailed treatment of maximum likelihood estimates (MLEs) and examines the theory of testing and confidence regions, including optimality theory for estimation and elementary robustness considerations. It next presents basic asymptotic approximations with one-dimensional parameter models as examples. The book also describes inference in multivariate (multiparameter) models, exploring asymptotic normality and optimality of ML

    Trade Review

    "These methods are clearly explained by two outstanding statistical practitioners. … This book is well supported by the references, increasing its value as a guide through the often difficult world of mathematical statistics. …the authors consider key topics which include asymptotic efficiency in semiparametric models, semiparametric maximum likelihood estimation, proportional hazards regression models and Markov chain Monte Carlo methods."
    — Receptos Pharmaceuticals, San Diego, 2016


    "These methods are clearly explained by two outstanding statistical practitioners. … This book is well supported by the references, increasing its value as a guide through the often difficult world of mathematical statistics. …the authors consider key topics which include asymptotic efficiency in semiparametric models, semiparametric maximum likelihood estimation, proportional hazards regression models and Markov chain Monte Carlo methods."
    — Receptos Pharmaceuticals, San Diego, 2016



    Table of Contents

    STATISTICAL MODELS, GOALS, AND PERFORMANCE CRITERIA. METHODS OF ESTIMATION. MEASURES OF PERFORMANCE. TESTING AND CONFIDENCE REGIONS. ASYMPTOTIC APPROXIMATIONS. INFERENCE IN THE MULTIPARAMETER CASE. APPENDICES. INDEX.

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account