Description
Book Synopsis1. Introductory Material.- 2. Green's Functions at Zero Temperature.- 3. Nonzero Temperatures.- 4. Exactly Solvable Models.- 5. Homogeneous Electron Gas.- 6. Strong Correlations.- 7. Electron-Phonon Interaction.- 8. dc Conductivities.- 9. Optical Properties of Solids.- 10. Superconductivity.- 11. Superfluids.- References.- Author Index.
Trade ReviewAbout the First Edition:
`This is a worthy newcomer and will make an excellent teaching text.
' Physics Bulletin `The book should serve as a valuable contribution to the library of students and researchers in solid state and theoretical physics.
' Philosophical Magazine About the Second Edition:
`Since its first edition, this book has become one of the most popular textbooks in quantum many-body theory, thus guaranteeing the interest of the scientific community in this second edition.
' Mathematical Reviews Table of Contents1: Introductory Material. 1.1. Harmonic Oscillators and Phonons. 1.2. Second Quantization for Particles. 1.3. Electron-Phonon Interactions. 1.4. Spin Hamiltonians. 1.5. Photons. 1.6. Pair Distribution Function. 2: Green's Functions at Zero Temperature. 2.1. Interaction Representation. 2.2. S Matrix. 2.3. Green's Functions. 2.4. Wick's Theorem. 2.5. Feynman Diagrams. 2.6. Vacuum Polarization Graphs. 2.7. Dyson's Equation. 2.8. Rules for Constructing Diagrams. 2.9. Time-Loop S Matrix. 2.10. Photon Green's Functions. 3: Nonzero Temperatures. 3.1. Introduction. 3.2. Matsubara Green's Functions. 3.3. Retarded and Advanced Green's Functions. 3.4. Dyson's Equation. 3.5. Frequency Summations. 3.6. Linked Cluster Expansions. 3.7. Real Time Green's Functions. 3.8. Kubo Formula for Electrical Conductivity. 3.9. Other Kubo Formulas. 4: Exactly Solvable Models. 4.1. Potential Scattering. 4.2. Localized State in the Continuum. 4.3. Independent Boson Models. 4.4. Bethe Lattice. 4.5. Tomonaga Model. 4.6. Polaritons. 5: Homogeneous Electron Gas. 5.1. Exchange and Correlation. 5.2. Wigner Lattice. 5.3. Metallic Hydrogen. 5.4. Linear Screening. 5.5. Model Dielectric Functions. 5.6. Properties of the Electron Gas. 5.7. Sum Rules. 5.8. One-Electron Properties. 6: Strong Correlations. 6.1. Kondo Model. 6.2. Single-Site Anderson Model. 6.3. Hubbard Model. 6.4. Hubbard Model: Magnetic Phases. 7: Electron-Phonon Interaction. 7.1. Fröhlich Hamiltonian. 7.2. Small Polaron Theory. 7.3. Heavily Doped Semiconductors. 7.4. Metals. 8: dc Conductivities. 8.1. Electron Scattering by Impurities. 8.2. Mobility of Frölich Polarons. 8.3. Electron-Phonon Relaxation Times. 8.4. Electron-Phonon Interactions in Metals. 8.5. Quantum Boltzmann Equation. 8.6. Quantum Dot Tunneling. 9: Optical Properties of Solids. 9.1. Nearly Free-Electron Systems. 9.2. Wannier Excitons. 9.3. X-Ray Spectra in Metals. 10: Superconductivity. 10.1. Cooper Instability. 10.2. Superconducting Tunneling. 10.3. Strong Coupling Theory. 10.4. Transition Temperature. 11: Superfluids. 11.1. Liquid 4He. 11.2. Liquid 3He. 11.3. Quantum Hall Effects.