Description

Book Synopsis

This book introduces machine learning methods in finance. It presents a unified treatment of machine learning and various statistical and computational disciplines in quantitative finance, such as financial econometrics and discrete time stochastic control, with an emphasis on how theory and hypothesis tests inform the choice of algorithm for financial data modeling and decision making. With the trend towards increasing computational resources and larger datasets, machine learning has grown into an important skillset for the finance industry. This book is written for advanced graduate students and academics in financial econometrics, mathematical finance and applied statistics, in addition to quants and data scientists in the field of quantitative finance.

Machine Learning in Finance: From Theory to Practice is divided into three parts, each part covering theory and applications. The first presents supervised learning for cross-sectional data from both a Bayesian and frequentist perspective. The more advanced material places a firm emphasis on neural networks, including deep learning, as well as Gaussian processes, with examples in investment management and derivative modeling. The second part presents supervised learning for time series data, arguably the most common data type used in finance with examples in trading, stochastic volatility and fixed income modeling. Finally, the third part presents reinforcement learning and its applications in trading, investment and wealth management. Python code examples are provided to support the readers' understanding of the methodologies and applications. The book also includes more than 80 mathematical and programming exercises, with worked solutions available to instructors. As a bridge to research in this emergent field, the final chapter presents the frontiers of machine learning in finance from a researcher's perspective, highlighting how many well-known concepts in statistical physics are likely to emerge as important methodologies for machine learning in finance.



Trade Review

“This book is, however, a well-structured and self-contained graduate textbook on ML applications in finance. Exercises and some applications are included at the end of each chapter and the Python code used in this book makes use of the Python Tensor Flow library. This book could also serve as a useful reference book for researchers and practitioners in quantitative finance.” (Gilles Teyssière, Mathematical Reviews, February, 2023)

“Each part is introduced with background information, examples of relevant practical applications, and references to the most recent scientific literature. … The book covers all essential areas of machine learning with relevance to quantitative finance. … An additional strong advantage of this book is the clear and consistent structure of its chapters. … Overall, the book covers multiple machine learning approaches with advanced technical exposition and is therefore especially suitable as an academic reference point, especially on Reinforcement Learning.” (Antoniya Shivarova, Financial Markets and Portfolio Management, Issue 35, 2021)

“This volume aims to present a broad yet technical treatment of (ML) algorithms used by financial practitioners and scholars alike. … the book fills a large void. … This encourages reproducibility as well as learning by doing, which is highly appreciated.” (Guillaume Coqueret, Quantitative Finance, October 15, 2020)



Table of Contents
Chapter 1. Introduction.- Chapter 2. Probabilistic Modeling.- Chapter 3. Bayesian Regression & Gaussian Processes.- Chapter 4. Feed Forward Neural Networks.- Chapter 5. Interpretability.- Chapter 6. Sequence Modeling.- Chapter 7. Probabilistic Sequence Modeling.- Chapter 8. Advanced Neural Networks.- Chapter 9. Introduction to Reinforcement learning.- Chapter 10. Applications of Reinforcement Learning.- Chapter 11. Inverse Reinforcement Learning and Imitation Learning.- Chapter 12. Frontiers of Machine Learning and Finance.

Machine Learning in Finance: From Theory to

Product form

£62.99

Includes FREE delivery

RRP £69.99 – you save £7.00 (10%)

Order before 4pm today for delivery by Tue 20 Jan 2026.

A Paperback / softback by Matthew F. Dixon, Igor Halperin, Paul Bilokon

1 in stock


    View other formats and editions of Machine Learning in Finance: From Theory to by Matthew F. Dixon

    Publisher: Springer Nature Switzerland AG
    Publication Date: 02/07/2021
    ISBN13: 9783030410704, 978-3030410704
    ISBN10: 3030410706

    Description

    Book Synopsis

    This book introduces machine learning methods in finance. It presents a unified treatment of machine learning and various statistical and computational disciplines in quantitative finance, such as financial econometrics and discrete time stochastic control, with an emphasis on how theory and hypothesis tests inform the choice of algorithm for financial data modeling and decision making. With the trend towards increasing computational resources and larger datasets, machine learning has grown into an important skillset for the finance industry. This book is written for advanced graduate students and academics in financial econometrics, mathematical finance and applied statistics, in addition to quants and data scientists in the field of quantitative finance.

    Machine Learning in Finance: From Theory to Practice is divided into three parts, each part covering theory and applications. The first presents supervised learning for cross-sectional data from both a Bayesian and frequentist perspective. The more advanced material places a firm emphasis on neural networks, including deep learning, as well as Gaussian processes, with examples in investment management and derivative modeling. The second part presents supervised learning for time series data, arguably the most common data type used in finance with examples in trading, stochastic volatility and fixed income modeling. Finally, the third part presents reinforcement learning and its applications in trading, investment and wealth management. Python code examples are provided to support the readers' understanding of the methodologies and applications. The book also includes more than 80 mathematical and programming exercises, with worked solutions available to instructors. As a bridge to research in this emergent field, the final chapter presents the frontiers of machine learning in finance from a researcher's perspective, highlighting how many well-known concepts in statistical physics are likely to emerge as important methodologies for machine learning in finance.



    Trade Review

    “This book is, however, a well-structured and self-contained graduate textbook on ML applications in finance. Exercises and some applications are included at the end of each chapter and the Python code used in this book makes use of the Python Tensor Flow library. This book could also serve as a useful reference book for researchers and practitioners in quantitative finance.” (Gilles Teyssière, Mathematical Reviews, February, 2023)

    “Each part is introduced with background information, examples of relevant practical applications, and references to the most recent scientific literature. … The book covers all essential areas of machine learning with relevance to quantitative finance. … An additional strong advantage of this book is the clear and consistent structure of its chapters. … Overall, the book covers multiple machine learning approaches with advanced technical exposition and is therefore especially suitable as an academic reference point, especially on Reinforcement Learning.” (Antoniya Shivarova, Financial Markets and Portfolio Management, Issue 35, 2021)

    “This volume aims to present a broad yet technical treatment of (ML) algorithms used by financial practitioners and scholars alike. … the book fills a large void. … This encourages reproducibility as well as learning by doing, which is highly appreciated.” (Guillaume Coqueret, Quantitative Finance, October 15, 2020)



    Table of Contents
    Chapter 1. Introduction.- Chapter 2. Probabilistic Modeling.- Chapter 3. Bayesian Regression & Gaussian Processes.- Chapter 4. Feed Forward Neural Networks.- Chapter 5. Interpretability.- Chapter 6. Sequence Modeling.- Chapter 7. Probabilistic Sequence Modeling.- Chapter 8. Advanced Neural Networks.- Chapter 9. Introduction to Reinforcement learning.- Chapter 10. Applications of Reinforcement Learning.- Chapter 11. Inverse Reinforcement Learning and Imitation Learning.- Chapter 12. Frontiers of Machine Learning and Finance.

    Recently viewed products

    © 2026 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account