Description

Book Synopsis
This book explains the complete loop to effectively use self-tracking data for machine learning. While it focuses on self-tracking data, the techniques explained are also applicable to sensory data in general, making it useful for a wider audience. Discussing concepts drawn from from state-of-the-art scientific literature, it illustrates the approaches using a case study of a rich self-tracking data set. Self-tracking has become part of the modern lifestyle, and the amount of data generated by these devices is so overwhelming that it is difficult to obtain useful insights from it. Luckily, in the domain of artificial intelligence there are techniques that can help out: machine-learning approaches allow this type of data to be analyzed. While there are ample books that explain machine-learning techniques, self-tracking data comes with its own difficulties that require dedicated techniques such as learning over time and across users.

Table of Contents
Introduction.- Basics of Sensory Data.- Feature Engineering based on Sensory Data.- Predictive Modeling without Notion of Time.- Predictive Modeling with Notion of Time.- Reinforcement Learning to Provide Feedback and Support.- Discussion.

Machine Learning for the Quantified Self: On the

Product form

£132.99

Includes FREE delivery

RRP £139.99 – you save £7.00 (5%)

Order before 4pm today for delivery by Mon 12 Jan 2026.

A Hardback by Mark Hoogendoorn, Burkhardt Funk

1 in stock


    View other formats and editions of Machine Learning for the Quantified Self: On the by Mark Hoogendoorn

    Publisher: Springer International Publishing AG
    Publication Date: 05/10/2017
    ISBN13: 9783319663074, 978-3319663074
    ISBN10: 3319663070
    Also in:
    Machine learning

    Description

    Book Synopsis
    This book explains the complete loop to effectively use self-tracking data for machine learning. While it focuses on self-tracking data, the techniques explained are also applicable to sensory data in general, making it useful for a wider audience. Discussing concepts drawn from from state-of-the-art scientific literature, it illustrates the approaches using a case study of a rich self-tracking data set. Self-tracking has become part of the modern lifestyle, and the amount of data generated by these devices is so overwhelming that it is difficult to obtain useful insights from it. Luckily, in the domain of artificial intelligence there are techniques that can help out: machine-learning approaches allow this type of data to be analyzed. While there are ample books that explain machine-learning techniques, self-tracking data comes with its own difficulties that require dedicated techniques such as learning over time and across users.

    Table of Contents
    Introduction.- Basics of Sensory Data.- Feature Engineering based on Sensory Data.- Predictive Modeling without Notion of Time.- Predictive Modeling with Notion of Time.- Reinforcement Learning to Provide Feedback and Support.- Discussion.

    Recently viewed products

    © 2026 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account