Description
Book SynopsisMachine learning is an exciting topic with a myriad of applications. However, most textbooks are targeted towards computer science students. This, however, creates a complication for scientists across the physical sciences that also want to understand the main concepts of machine learning and look ahead to applica- tions and advancements in their fields.
This textbook bridges this gap, providing an introduction to the mathematical foundations for the main algorithms used in machine learning for those from the physical sciences, without a formal background in computer science. It demon- strates how machine learning can be used to solve problems in physics and engineering, targeting senior undergraduate and graduate students in physics and electrical engineering, alongside advanced researchers.
All codes are available on the author''s website: CLab (nau.edu)
They are
Table of Contents
Chapter 1: Multivariate Calculus. Chapter 2: Probability Theory. Chapter 3: Dimensionality Reduction. Chapter 4: Cluster Analysis. Chapter 5: Vector Quantization Techniques. Chapter 6: Regression Models. Chapter 7: Classification. Chapter 8: Feedforward Networks. Chapter 9: Advanced Network Architectures. Chapter 10: Value Methods. Chapter 11: Gradient Methods. Chapter 12: Population-Based Metaheuristic Methods. Chapter 13: Local Search methods. Appendix A: Sufficient Statistic. Appendix B: Graphs. Appendix C: Sequential Minimization Optimization. Appendix D: Algorithmic Differentiation. Appendix E: Batch Normalizing Transform. Appendix F: Divergence of Two Gaussian Distributions. Appendix G: Continuous-time Bellman's Equation. Appendix H: Conjugate Gradient. Appendix I: Importance Sampling. References. Index.