Description

Book Synopsis
The study of (special cases of) elliptic curves goes back to Diophantos and Fermat, and today it is still one of the liveliest centres of research in number theory. This book, which is addressed to beginning graduate students, introduces basic theory from a contemporary viewpoint but with an eye to the historical background. The central portion deals with curves over the rationals: the Mordell-Weil finite basis theorem, points of finite order (Nagell-Lutz) etc. The treatment is structured by the local-global standpoint and culminates in the description of the Tate-Shafarevich group as the obstruction to a Hasse principle. In an introductory section the Hasse principle for conics is discussed. The book closes with sections on the theory over finite fields (the 'Riemann hypothesis for function fields') and recently developed uses of elliptic curves for factoring large integers. Prerequisites are kept to a minimum; an acquaintance with the fundamentals of Galois theory is assumed, but no

Trade Review
'… an excellent introduction … written with humour.' Monatshefte für Mathematik

Table of Contents
Introduction; 1. Curves of genus: introduction; 2. p-adic numbers; 3. The local-global principle for conics; 4. Geometry of numbers; 5. Local-global principle: conclusion of proof; 6. Cubic curves; 7. Non-singular cubics: the group law; 8. Elliptic curves: canonical form; 9. Degenerate laws; 10. Reduction; 11. The p-adic case; 12. Global torsion; 13. Finite basis theorem: strategy and comments; 14. A 2-isogeny; 15. The weak finite basis theorem; 16. Remedial mathematics: resultants; 17. Heights: finite basis theorem; 18. Local-global for genus principle; 19. Elements of Galois cohomology; 20. Construction of the jacobian; 21. Some abstract nonsense; 22. Principle homogeneous spaces and Galois cohomology; 23. The Tate-Shafarevich group; 24. The endomorphism ring; 25. Points over finite fields; 26. Factorizing using elliptic curves; Formulary; Further reading; Index.

London Mathematical Society Student Texts 24 Lectures on Elliptic Curves 0024 London Mathematical Society Student Texts Series Number 24

Product form

£36.99

Includes FREE delivery

Order before 4pm today for delivery by Tue 16 Dec 2025.

A Paperback by J. W. S. Cassels

15 in stock


    View other formats and editions of London Mathematical Society Student Texts 24 Lectures on Elliptic Curves 0024 London Mathematical Society Student Texts Series Number 24 by J. W. S. Cassels

    Publisher: Cambridge University Press
    Publication Date: 11/21/1991 12:00:00 AM
    ISBN13: 9780521425308, 978-0521425308
    ISBN10: 0521425301

    Description

    Book Synopsis
    The study of (special cases of) elliptic curves goes back to Diophantos and Fermat, and today it is still one of the liveliest centres of research in number theory. This book, which is addressed to beginning graduate students, introduces basic theory from a contemporary viewpoint but with an eye to the historical background. The central portion deals with curves over the rationals: the Mordell-Weil finite basis theorem, points of finite order (Nagell-Lutz) etc. The treatment is structured by the local-global standpoint and culminates in the description of the Tate-Shafarevich group as the obstruction to a Hasse principle. In an introductory section the Hasse principle for conics is discussed. The book closes with sections on the theory over finite fields (the 'Riemann hypothesis for function fields') and recently developed uses of elliptic curves for factoring large integers. Prerequisites are kept to a minimum; an acquaintance with the fundamentals of Galois theory is assumed, but no

    Trade Review
    '… an excellent introduction … written with humour.' Monatshefte für Mathematik

    Table of Contents
    Introduction; 1. Curves of genus: introduction; 2. p-adic numbers; 3. The local-global principle for conics; 4. Geometry of numbers; 5. Local-global principle: conclusion of proof; 6. Cubic curves; 7. Non-singular cubics: the group law; 8. Elliptic curves: canonical form; 9. Degenerate laws; 10. Reduction; 11. The p-adic case; 12. Global torsion; 13. Finite basis theorem: strategy and comments; 14. A 2-isogeny; 15. The weak finite basis theorem; 16. Remedial mathematics: resultants; 17. Heights: finite basis theorem; 18. Local-global for genus principle; 19. Elements of Galois cohomology; 20. Construction of the jacobian; 21. Some abstract nonsense; 22. Principle homogeneous spaces and Galois cohomology; 23. The Tate-Shafarevich group; 24. The endomorphism ring; 25. Points over finite fields; 26. Factorizing using elliptic curves; Formulary; Further reading; Index.

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account