Description
Book SynopsisEmphasizes a vectors approach and prepares students to make the transition from computational to theoretical mathematics. This book includes applications drawn from a variety of disciplines, which reinforce the fact that linear algebra is a valuable tool for modeling real-life problems.
Table of Contents1. VECTORS. Introduction: The Racetrack Game. The Geometry and Algebra of Vectors. Length and Angle: The Dot Product. Exploration: Vectors and Geometry. Lines and Planes. Exploration: The Cross Product. Writing Project: Origins of the Dot Product and the Cross Product. Applications. 2. SYSTEMS OF LINEAR EQUATIONS. Introduction: Triviality. Introduction to Systems of Linear Equations. Direct Methods for Solving Linear Systems. Writing Project: A History of Gaussian Elimination. Explorations: Lies My Computer Told Me; Partial Pivoting; Counting Operations: An Introduction to the Analysis of Algorithms. Spanning Sets and Linear Independence. Applications. Vignette: The Global Positioning System. Iterative Methods for Solving Linear Systems. 3. MATRICES. Introduction: Matrices in Action. Matrix Operations. Matrix Algebra. The Inverse of a Matrix. The LU Factorization. Subspaces, Basis, Dimension, and Rank. Introduction to Linear Transformations. Vignette: Robotics. Applications. 4. EIGENVALUES AND EIGENVECTORS. Introduction: A Dynamical System on Graphs. Introduction to Eigenvalues and Eigenvectors. Determinants. Writing Project: Which Came First-the Matrix or the Determinant? Vignette: Lewis Carroll's Condensation Method. Exploration: Geometric Applications of Determinants. Eigenvalues and Eigenvectors of n x n Matrices. Writing Project: The History of Eigenvalues. Similarity and Diagonalization. Iterative Methods for Computing Eigenvalues. Applications and the Perron-Frobenius Theorem. Vignette: Ranking Sports Teams and Searching the Internet. 5. ORTHOGONALITY. Introduction: Shadows on a Wall. Orthogonality in Rn. Orthogonal Complements and Orthogonal Projections. The Gram-Schmidt Process and the QR Factorization. Explorations: The Modified QR Factorization; Approximating Eigenvalues with the QR Algorithm. Orthogonal Diagonalization of Symmetric Matrices. Applications. 6. VECTOR SPACES. Introduction: Fibonacci in (Vector) Space. Vector Spaces and Subspaces. Linear Independence, Basis, and Dimension. Writing Project: The Rise of Vector Spaces. Exploration: Magic Squares. Change of Basis. Linear Transformations. The Kernel and Range of a Linear Transformation. The Matrix of a Linear Transformation. Exploration: Tilings, Lattices and the Crystallographic Restriction. Applications. 7. DISTANCE AND APPROXIMATION. Introduction: Taxicab Geometry. Inner Product Spaces. Explorations: Vectors and Matrices with Complex Entries; Geometric Inequalities and Optimization Problems. Norms and Distance Functions. Least Squares Approximation. The Singular Value Decomposition. Vignette: Digital Image Compression. Applications. 8. CODES. (Online) Code Vectors. Vignette: The Codabar System. Error-Correcting Codes. Dual Codes. Linear Codes. The Minimum Distance of a Code. Appendix A: Mathematical Notation and Methods of Proof. Appendix B: Mathematical Induction. Appendix C: Complex Numbers. Appendix D: Polynomials.