Description
Book SynopsisA hands-on textbook teaching how to carry out large-scale data analytics and implement machine learning solutions for big data. Including copious real-world examples, it offers a coherent teaching package with lab assignments, exercises, solutions for instructors, and lecture slides.
Trade Review'With the growing ubiquity of large and complex datasets, MapReduce and Spark's dataflow programming models have become mission-critical skills for data scientists, data engineers, and ML engineers. Triguero and Galar leverage their extensive teaching experience on this topic to deliver this tour de force deep dive into both the technical concepts and programming knowhow needed for such modern large-scale data analytics. They interleave intuitive exposition of the concepts and examples from data engineering and classical ML pipelines with well-thought-out hands-on code and outputs. This book not only shows how all this knowledge is useful in practice today but also sets up the reader to be able to successfully 'generalize' to future workloads.' Arun Kumar, University of California, San Diego
Table of ContentsPart I. Understanding and Dealing with Big Data: 1. Introduction; 2. MapReduce; Part II. Big Data Frameworks: 3. Hadoop; 4. Spark; 5. Spark SQL and DataFrames; Part III. Machine Learning for Big Data: 6. Machine Learning with Spark; 7. Machine Learning for Big Data; 8. Implementing Classical Methods: k-means and Linear Regression; 9. Advanced Examples: Semi-supervised, Ensembles, Deep Learning Model Deployment.