Description

Book Synopsis


Table of Contents

Chapter 1: Crystal Structure 1

Periodic Arrays of Atoms 3

Lattice Translation Vectors 4

Basis and the Crystal Structure 5

Primitive Lattice Cell 6

Fundamental Types of Lattices 6

Two-Dimensional Lattice Types 8

Three-Dimensional Lattice Types 9

Index Systems for Crystal Planes 11

Simple Crystal Structures 13

Sodium Chloride Structure 13

Cesium Chloride Structure 14

Hexagonal Close-Packed Structure (hcp) 15

Diamond Structure 16

Cubic Zinc Sulfide Structure 17

Direct Imaging of Atomic Structure 18

Nonideal Crystal Structures 18

Random Stacking and Polytypism 19

Crystal Structure Data 19

Summary 22

Problems 22

Chapter 2: Wave Diffraction And The Reciprocal Lattice 25

Diffraction of Waves by Crystals 27

The Bragg Law 27

Scattered Wave Amplitude 28

Fourier Analysis 29

Reciprocal Lattice Vectors 31

Diffraction Conditions 32

Laue Equations 34

Brillouin Zones 35

Reciprocal Lattice to sc Lattice 36

Reciprocal Lattice to bcc Lattice 38

Reciprocal Lattice to fcc Lattice 39

Fourier Analysis of the Basis 41

Structure Factor of the bcc Lattice 42

Structure Factor of the fcc Lattice 42

Atomic Form Factor 43

Summary 45

Problems 45

Chapter 3: Crystal Binding And Elastic Constants 49

Crystals of Inert Gases 51

Van der Waals–London Interaction 55

Repulsive Interaction 58

Equilibrium Lattice Constants 60

Cohesive Energy 61

Ionic Crystals 62

Electrostatic or Madelung Energy 62

Evaluation of the Madelung Constant 66

Covalent Crystals 69

Metals 71

Hydrogen Bonds 72

Atomic Radii 72

Ionic Crystal Radii 74

Analysis of Elastic Strains 75

Dilation 77

Stress Components 77

Elastic Compliance and Stiffness Constants 79

Elastic Energy Density 79

Elastic Stiffness Constants of Cubic Crystals 80

Bulk Modulus and Compressibility 82

Elastic Waves in Cubic Crystals 82

Waves in the [100] Direction 83

Waves in the [110] Direction 84

Summary 87

Problems 87

Chapter 4: phonons I. Crystal vibrations 91

Vibrations of Crystals with Monatomic Basis 93

First Brillouin Zone 95

Group Velocity 96

Long Wavelength Limit 96

Derivation of Force Constants from Experiment 96

Two Atoms per Primitive Basis 97

Quantization of Elastic Waves 101

Phonon Momentum 102

Inelastic Scattering by Phonons 102

Summary 104

Problems 104

Chapter 5: phonons 11. Thermal properties 107

Phonon Heat Capacity 109

Planck Distribution 109

Normal Mode Enumeration 110

Density of States in One Dimension 110

Density of States in Three Dimensions 113

Debye Model for Density of States 114

Debye T3 Law 116

Einstein Model of the Density of States 116

General Result for D( ) 119

Anharmonic Crystal Interactions 121

Thermal Expansion 122

Thermal Conductivity 123

Thermal Resistivity of Phonon Gas 125

Umklapp Processes 127

Imperfections 128

Problems 130

Chapter 6: Free Electron Fermi Gas 133

Energy Levels in One Dimension 136

Effect of Temperature on the FermiDirac Distribution 138

Free Electron Gas in Three Dimensions 139

Heat Capacity of the Electron Gas 143

Experimental Heat Capacity of Metals 147

Heavy Fermions 149

Electrical Conductivity and Ohm’s Law 149

Experimental Electrical Resistivity of Metals 150

Umklapp Scattering 153

Motion in Magnetic Fields 154

Hall Effect 155

Thermal Conductivity of Metals 158

Ratio of Thermal to Electrical Conductivity 158

Problems 159

Chapter 7: Energy Bands 163

Nearly Free Electron Model 166

Origin of the Energy Gap 167

Magnitude of the Energy Gap 169

Bloch Functions 169

Kronig-Penney Model 170

Wave Equation of Electron in a Periodic Potential 171

Restatement of the Bloch Theorem 175

Crystal Momentum of an Electron 175

Solution of the Central Equation 176

Kronig-Penney Model in Reciprocal Space 176

Empty Lattice Approximation 178

Approximate Solution Near a Zone Boundary 179

Number of Orbitals in a Band 182

Metals and Insulators 183

Summary 184

Problems 184

Chapter 8: Semiconductor Crystals 187

Band Gap 189

Equations of Motion 193

Physical Derivation of 195

Holes 196

Effective Mass 199

Physical Interpretation of the Effective Mass 200

Effective Masses in Semiconductors 202

Silicon and Germanium 204

Intrinsic Carrier Concentration 207

Intrinsic Mobility 210

Impurity Conductivity 211

Donor States 211

Acceptor States 213

Thermal Ionization of Donors and Acceptors 215

Thermoelectric Effects 216

Semimetals 217

Superlattices 218

Bloch Oscillator 219

Zener Tunneling 219

Summary 219

Problems 220

Chapter 9: Fermi Surfaces And Metals 223

Reduced Zone Scheme 225

Periodic Zone Scheme 227

Construction of Fermi Surfaces 228

Nearly Free Electrons 230

Electron Orbits, Hole Orbits, and Open Orbits 232

Calculation of Energy Bands 234

Tight Binding Method for Energy Bands 234

Wigner-Seitz Method 238

Cohesive Energy 239

Pseudopotential Methods 241

Experimental Methods in Fermi Surface Studies 244

Quantization of Orbits in a Magnetic Field 244

De Haas-van Alphen Effect 246

Extremal Orbits 250

Fermi Surface of Copper 251

Magnetic Breakdown 253

Summary 254

Problems 254

Chapter 10: Superconductivity 259

Experimental Survey 261

Occurrence of Superconductivity 262

Destruction of Superconductivity by Magnetic Fields 264

Meissner Effect 264

Heat Capacity 266

Energy Gap 268

Microwave and Infrared Properties 270

Isotope Effect 271

Theoretical Survey 272

Thermodynamics of the Superconducting Transition 272

London Equation 275

Coherence Length 278

BCS Theory of Superconductivity 279

BCS Ground State 280

Flux Quantization in a Superconducting Ring 281

Duration of Persistent Currents 284

Type II Superconductors 285

Vortex State 286

Estimation of Hc1 and Hc2 286

Single Particle Tunneling 289

Josephson Superconductor Tunneling 291

Dc Josephson Effect 291

Ac Josephson Effect 292

Macroscopic Quantum Interference 294

High-Temperature Superconductors 295

Summary 296

Problems 296

Reference 298

Chapter 11: Diamagnetism And Paramagnetism 299

Langevin Diamagnetism Equation 301

Quantum Theory of Diamagnetism of Mononuclear Systems 303

Paramagnetism 304

Quantum Theory of Paramagnetism 304

Rare Earth Ions 307

Hund Rules 308

Iron Group Ions 309

Crystal Field Splitting 309

Quenching of the Orbital Angular Momentum 310

Spectroscopic Splitting Factor 313

Van Vleck Temperature-Independent Paramagnetism 313

Cooling by Isentropic Demagnetization 314

Nuclear Demagnetization 316

Paramagnetic Susceptibility of Conduction Electrons 317

Summary 319

Problems 320

Chapter 12: Ferromagnetism And Antiferromagnetism 323

Ferromagnetic Order 325

Curie Point and the Exchange Integral 325

Temperature Dependence of the Saturation

Magnetization 328

Saturation Magnetization at Absolute Zero 330

Magnons 332

Quantization of Spin Waves 335

Thermal Excitation of Magnons 336

Neutron Magnetic Scattering 337

Ferrimagnetic Order 338

Curie Temperature and Susceptibility of Ferrimagnets 340

Iron Garnets 341

Antiferromagnetic Order 342

Susceptibility Below the Néel Temperature 345

Antiferromagnetic Magnons 346

Ferromagnetic Domains 348

Anisotropy Energy 350

Transition Region Between Domains 351

Origin of Domains 353

Coercivity and Hysteresis 354

Single-Domain Particles 356

Geomagnetism and Biomagnetism 357

Magnetic Force Microscopy 357

Summary 359

Problems 359

Chapter 13: Magnetic Resonance 363

Nuclear Magnetic Resonance 365

Equations of Motion 368

Line Width 372

Motional Narrowing 373

Hyperfine Splitting 375

Examples: Paramagnetic Point Defects 377

F Centers in Alkali Halides 378

Donor Atoms in Silicon 378

Knight Shift 379

Nuclear Quadrupole Resonance 381

Ferromagnetic Resonance 381

Shape Effects in FMR 382

Spin Wave Resonance 384

Antiferromagnetic Resonance 385

Electron Paramagnetic Resonance 388

Exchange Narrowing 388

Zero-field Splitting 388

Principle of Maser Action 388

Three-Level Maser 390

Lasers 391

Summary 392

Problems 393

Chapter 14: Dielectrics And Ferroelectrics 395

Maxwell Equations 397

Polarization 397

Macroscopic Electric Field 398

Depolarization Field, E1 400

Local Electric Field at an Atom 402

Lorentz Field, E2 404

Field of Dipoles Inside Cavity, E3 404

Dielectric Constant and Polarizability 405

Electronic Polarizability 406

Classical Theory of Electronic Polarizability 408

Structural Phase Transitions 409

Ferroelectric Crystals 409

Classification of Ferroelectric Crystals 411

Displacive Transitions 413

Soft Optical Phonons 415

Landau Theory of the Phase Transition 416

Second-Order Transition 417

First-Order Transition 419

Antiferroelectricity 421

Ferroelectric Domains 421

Piezoelectricity 423

Summary 424

Problems 425

Chapter 15: Plasmons, Polaritons, And Polarons 429

Dielectric Function of the Electron Gas 431

Definitions of the Dielectric Function 431

Plasma Optics 432

Dispersion Relation for Electromagnetic Waves 433

Transverse Optical Modes in a Plasma 434

Transparency of Metals in the Ultraviolet 434

Longitudinal Plasma Oscillations 434

Plasmons 437

Electrostatic Screening 439

Screened Coulomb Potential 442

Pseudopotential Component U(0) 443

Mott Metal-Insulator Transition 443

Screening and Phonons in Metals 445

Polaritons 446

LST Relation 450

Electron-Electron Interaction 453

Fermi Liquid 453

Electron-Electron Collisions 453

Electron-Phonon Interaction:

Polarons 456

Peierls Instability of Linear

Metals 458

Summary 460

Problems 460

Chapter 16: Optical Processes And Excitons 465

Optical Reflectance 467

Kramers-Kronig Relations 468

Mathematical Note 470

Example: Conductivity of Collisionless Electron Gas 471

Electronic Interband Transitions 472

Excitons 473

Frenkel Excitons 475

Alkali Halides 478

Molecular Crystals 478

Weakly Bound (Mott-Wannier) Excitons 479

Exciton Condensation into Electron-Hole Drops (EHD) 479

Raman Effect in Crystals 482

Electron Spectroscopy with X-Rays 485

Energy Loss of Fast Particles in a Solid 486

Summary 487

Problems 488

Chapter 17: Surface And Interface Physics 491

Reconstruction and Relaxation 493

Surface Crystallography 494

Reflection High-Energy Electron Diffraction 497

Surface Electronic Structure 498

Work Function 498

Thermionic Emission 499

Surface States 499

Tangential Surface Transport 501

Magnetoresistance in a Two-Dimensional Channel 502

Integral Quantized Hall Effect (IQHE) 503

IQHE in Real Systems 504

Fractional Quantized Hall Effect (FQHE) 507

p-n Junctions 507

Rectification 508

Solar Cells and Photovoltaic Detectors 510

Schottky Barrier 510

Heterostructures 511

n-N Heterojunction 512

Semiconductor Lasers 514

Light-Emitting Diodes 515

Problems 517

Chapter 18: Nanostructures 521

Imaging Techniques for Nanostructures 525

Electron Microscopy 526

Optical Microscopy 527

Scanning Tunneling Microscopy 529

Atomic Force Microscopy 532

Electronic Structure of 1D Systems 534

One-dimensional (1D) Subbands 534

Spectroscopy of Van Hove Singularities 535

1D Metals—Coulomb Interactions and Lattice Couplings 537

Electrical Transport in 1D 539

Conductance Quantization and the Landauer Formula 539

Two Barriers in Series-Resonant Tunneling 542

Incoherent Addition and Ohm’s Law 544

Localization 545

Voltage Probes and the Büttiker-Landauer Formalism 546

Electronic Structure of 0D Systems 551

Quantized Energy Levels 551

Semiconductor Nanocrystals 551

Metallic Dots 553

Discrete Charge States 555

Electrical Transport in 0D 557

Coulomb Oscillations 557

Spin, Mott Insulators, and the Kondo Effect 560

Cooper Pairing in Superconducting Dots 562

Vibrational and Thermal Properties 563

Quantized Vibrational Modes 563

Transverse Vibrations 565

Heat Capacity and Thermal Transport 567

Summary 568

Problems 568

Chapter 19: Noncrystalline Solids 573

Diffraction Pattern 575

Monatomic Amorphous Materials 576

Radial Distribution Function 577

Structure of Vitreous Silica, SiO2 578

Glasses 581

Viscosity and the Hopping Rate 582

Amorphous Ferromagnets 583

Amorphous Semiconductors 585

Low Energy Excitations in Amorphous Solids 586

Heat Capacity Calculation 586

Thermal Conductivity 587

Fiber Optics 589

Rayleigh Attenuation 590

Problems 590

Chapter 20: Point Defects 593

Lattice Vacancies 595

Diffusion 598

Metals 601

Color Centers 602

F Centers 602

Other Centers in Alkali Halides 603

Problems 605

Chapter 21: Dislocations 607

Shear Strength of Single Crystals 609

Slip 610

Dislocations 611

Burgers Vectors 614

Stress Fields of Dislocations 615

Low-angle Grain Boundaries 617

Dislocation Densities 620

Dislocation Multiplication and Slip 621

Strength of Alloys 623

Dislocations and Crystal Growth 625

Whiskers 626

Hardness of Materials 627

Problems 628

Chapter 22: Alloys 631

General Considerations 633

Substitutional Solid Solutions— Hume-Rothery Rules 636

Order-Disorder Transformation 639

Elementary Theory of Order 641

Phase Diagrams 644

Eutectics 644

Transition Metal Alloys 646

Electrical Conductivity 648

Kondo Effect 649

Problems 652

Appendix A: Temperature Dependence Of The Reflection Lines 653

Appendix B: Ewald Calculation Of Lattice Sums 656

Ewald-Kornfeld Method for Lattice Sums for Dipole Arrays 659

Appendix C: Quantization Of Elastic Waves: Phonons 660

Phonon Coordinates 661

Creation and Annihilation Operators 663

Appendix D: Fermi-Dirac Distribution Function 664

Appendix E: Derivation Of The Dk/Dt Equation 667

Appendix F: Boltzmann Transport Equation 668

Particle Diffusion 669

Classical Distribution 670

Fermi-Dirac Distribution 671

Electrical Conductivity 673

Appendix G: Vector Potential, Field Momentum, And Gauge Transformations 673

Lagrangian Equations of Motion 674

Derivation of the Hamiltonian 675

Field Momentum 675

Gauge Transformation 676

Gauge in the London Equation 677

Appendix H: Cooper Pairs 677

Appendix I: Ginzburg-Landau Equation 679

Appendix J: Electron-Phonon Collisions 683

Index 687

Kittels Introduction to Solid State Physics

Product form

£48.59

Includes FREE delivery

RRP £53.99 – you save £5.40 (10%)

Order before 4pm tomorrow for delivery by Mon 22 Dec 2025.

A Paperback / softback by Charles Kittel

15 in stock


    View other formats and editions of Kittels Introduction to Solid State Physics by Charles Kittel

    Publisher: John Wiley & Sons Inc
    Publication Date: 09/07/2018
    ISBN13: 9781119454168, 978-1119454168
    ISBN10: 1119454166

    Description

    Book Synopsis


    Table of Contents

    Chapter 1: Crystal Structure 1

    Periodic Arrays of Atoms 3

    Lattice Translation Vectors 4

    Basis and the Crystal Structure 5

    Primitive Lattice Cell 6

    Fundamental Types of Lattices 6

    Two-Dimensional Lattice Types 8

    Three-Dimensional Lattice Types 9

    Index Systems for Crystal Planes 11

    Simple Crystal Structures 13

    Sodium Chloride Structure 13

    Cesium Chloride Structure 14

    Hexagonal Close-Packed Structure (hcp) 15

    Diamond Structure 16

    Cubic Zinc Sulfide Structure 17

    Direct Imaging of Atomic Structure 18

    Nonideal Crystal Structures 18

    Random Stacking and Polytypism 19

    Crystal Structure Data 19

    Summary 22

    Problems 22

    Chapter 2: Wave Diffraction And The Reciprocal Lattice 25

    Diffraction of Waves by Crystals 27

    The Bragg Law 27

    Scattered Wave Amplitude 28

    Fourier Analysis 29

    Reciprocal Lattice Vectors 31

    Diffraction Conditions 32

    Laue Equations 34

    Brillouin Zones 35

    Reciprocal Lattice to sc Lattice 36

    Reciprocal Lattice to bcc Lattice 38

    Reciprocal Lattice to fcc Lattice 39

    Fourier Analysis of the Basis 41

    Structure Factor of the bcc Lattice 42

    Structure Factor of the fcc Lattice 42

    Atomic Form Factor 43

    Summary 45

    Problems 45

    Chapter 3: Crystal Binding And Elastic Constants 49

    Crystals of Inert Gases 51

    Van der Waals–London Interaction 55

    Repulsive Interaction 58

    Equilibrium Lattice Constants 60

    Cohesive Energy 61

    Ionic Crystals 62

    Electrostatic or Madelung Energy 62

    Evaluation of the Madelung Constant 66

    Covalent Crystals 69

    Metals 71

    Hydrogen Bonds 72

    Atomic Radii 72

    Ionic Crystal Radii 74

    Analysis of Elastic Strains 75

    Dilation 77

    Stress Components 77

    Elastic Compliance and Stiffness Constants 79

    Elastic Energy Density 79

    Elastic Stiffness Constants of Cubic Crystals 80

    Bulk Modulus and Compressibility 82

    Elastic Waves in Cubic Crystals 82

    Waves in the [100] Direction 83

    Waves in the [110] Direction 84

    Summary 87

    Problems 87

    Chapter 4: phonons I. Crystal vibrations 91

    Vibrations of Crystals with Monatomic Basis 93

    First Brillouin Zone 95

    Group Velocity 96

    Long Wavelength Limit 96

    Derivation of Force Constants from Experiment 96

    Two Atoms per Primitive Basis 97

    Quantization of Elastic Waves 101

    Phonon Momentum 102

    Inelastic Scattering by Phonons 102

    Summary 104

    Problems 104

    Chapter 5: phonons 11. Thermal properties 107

    Phonon Heat Capacity 109

    Planck Distribution 109

    Normal Mode Enumeration 110

    Density of States in One Dimension 110

    Density of States in Three Dimensions 113

    Debye Model for Density of States 114

    Debye T3 Law 116

    Einstein Model of the Density of States 116

    General Result for D( ) 119

    Anharmonic Crystal Interactions 121

    Thermal Expansion 122

    Thermal Conductivity 123

    Thermal Resistivity of Phonon Gas 125

    Umklapp Processes 127

    Imperfections 128

    Problems 130

    Chapter 6: Free Electron Fermi Gas 133

    Energy Levels in One Dimension 136

    Effect of Temperature on the FermiDirac Distribution 138

    Free Electron Gas in Three Dimensions 139

    Heat Capacity of the Electron Gas 143

    Experimental Heat Capacity of Metals 147

    Heavy Fermions 149

    Electrical Conductivity and Ohm’s Law 149

    Experimental Electrical Resistivity of Metals 150

    Umklapp Scattering 153

    Motion in Magnetic Fields 154

    Hall Effect 155

    Thermal Conductivity of Metals 158

    Ratio of Thermal to Electrical Conductivity 158

    Problems 159

    Chapter 7: Energy Bands 163

    Nearly Free Electron Model 166

    Origin of the Energy Gap 167

    Magnitude of the Energy Gap 169

    Bloch Functions 169

    Kronig-Penney Model 170

    Wave Equation of Electron in a Periodic Potential 171

    Restatement of the Bloch Theorem 175

    Crystal Momentum of an Electron 175

    Solution of the Central Equation 176

    Kronig-Penney Model in Reciprocal Space 176

    Empty Lattice Approximation 178

    Approximate Solution Near a Zone Boundary 179

    Number of Orbitals in a Band 182

    Metals and Insulators 183

    Summary 184

    Problems 184

    Chapter 8: Semiconductor Crystals 187

    Band Gap 189

    Equations of Motion 193

    Physical Derivation of 195

    Holes 196

    Effective Mass 199

    Physical Interpretation of the Effective Mass 200

    Effective Masses in Semiconductors 202

    Silicon and Germanium 204

    Intrinsic Carrier Concentration 207

    Intrinsic Mobility 210

    Impurity Conductivity 211

    Donor States 211

    Acceptor States 213

    Thermal Ionization of Donors and Acceptors 215

    Thermoelectric Effects 216

    Semimetals 217

    Superlattices 218

    Bloch Oscillator 219

    Zener Tunneling 219

    Summary 219

    Problems 220

    Chapter 9: Fermi Surfaces And Metals 223

    Reduced Zone Scheme 225

    Periodic Zone Scheme 227

    Construction of Fermi Surfaces 228

    Nearly Free Electrons 230

    Electron Orbits, Hole Orbits, and Open Orbits 232

    Calculation of Energy Bands 234

    Tight Binding Method for Energy Bands 234

    Wigner-Seitz Method 238

    Cohesive Energy 239

    Pseudopotential Methods 241

    Experimental Methods in Fermi Surface Studies 244

    Quantization of Orbits in a Magnetic Field 244

    De Haas-van Alphen Effect 246

    Extremal Orbits 250

    Fermi Surface of Copper 251

    Magnetic Breakdown 253

    Summary 254

    Problems 254

    Chapter 10: Superconductivity 259

    Experimental Survey 261

    Occurrence of Superconductivity 262

    Destruction of Superconductivity by Magnetic Fields 264

    Meissner Effect 264

    Heat Capacity 266

    Energy Gap 268

    Microwave and Infrared Properties 270

    Isotope Effect 271

    Theoretical Survey 272

    Thermodynamics of the Superconducting Transition 272

    London Equation 275

    Coherence Length 278

    BCS Theory of Superconductivity 279

    BCS Ground State 280

    Flux Quantization in a Superconducting Ring 281

    Duration of Persistent Currents 284

    Type II Superconductors 285

    Vortex State 286

    Estimation of Hc1 and Hc2 286

    Single Particle Tunneling 289

    Josephson Superconductor Tunneling 291

    Dc Josephson Effect 291

    Ac Josephson Effect 292

    Macroscopic Quantum Interference 294

    High-Temperature Superconductors 295

    Summary 296

    Problems 296

    Reference 298

    Chapter 11: Diamagnetism And Paramagnetism 299

    Langevin Diamagnetism Equation 301

    Quantum Theory of Diamagnetism of Mononuclear Systems 303

    Paramagnetism 304

    Quantum Theory of Paramagnetism 304

    Rare Earth Ions 307

    Hund Rules 308

    Iron Group Ions 309

    Crystal Field Splitting 309

    Quenching of the Orbital Angular Momentum 310

    Spectroscopic Splitting Factor 313

    Van Vleck Temperature-Independent Paramagnetism 313

    Cooling by Isentropic Demagnetization 314

    Nuclear Demagnetization 316

    Paramagnetic Susceptibility of Conduction Electrons 317

    Summary 319

    Problems 320

    Chapter 12: Ferromagnetism And Antiferromagnetism 323

    Ferromagnetic Order 325

    Curie Point and the Exchange Integral 325

    Temperature Dependence of the Saturation

    Magnetization 328

    Saturation Magnetization at Absolute Zero 330

    Magnons 332

    Quantization of Spin Waves 335

    Thermal Excitation of Magnons 336

    Neutron Magnetic Scattering 337

    Ferrimagnetic Order 338

    Curie Temperature and Susceptibility of Ferrimagnets 340

    Iron Garnets 341

    Antiferromagnetic Order 342

    Susceptibility Below the Néel Temperature 345

    Antiferromagnetic Magnons 346

    Ferromagnetic Domains 348

    Anisotropy Energy 350

    Transition Region Between Domains 351

    Origin of Domains 353

    Coercivity and Hysteresis 354

    Single-Domain Particles 356

    Geomagnetism and Biomagnetism 357

    Magnetic Force Microscopy 357

    Summary 359

    Problems 359

    Chapter 13: Magnetic Resonance 363

    Nuclear Magnetic Resonance 365

    Equations of Motion 368

    Line Width 372

    Motional Narrowing 373

    Hyperfine Splitting 375

    Examples: Paramagnetic Point Defects 377

    F Centers in Alkali Halides 378

    Donor Atoms in Silicon 378

    Knight Shift 379

    Nuclear Quadrupole Resonance 381

    Ferromagnetic Resonance 381

    Shape Effects in FMR 382

    Spin Wave Resonance 384

    Antiferromagnetic Resonance 385

    Electron Paramagnetic Resonance 388

    Exchange Narrowing 388

    Zero-field Splitting 388

    Principle of Maser Action 388

    Three-Level Maser 390

    Lasers 391

    Summary 392

    Problems 393

    Chapter 14: Dielectrics And Ferroelectrics 395

    Maxwell Equations 397

    Polarization 397

    Macroscopic Electric Field 398

    Depolarization Field, E1 400

    Local Electric Field at an Atom 402

    Lorentz Field, E2 404

    Field of Dipoles Inside Cavity, E3 404

    Dielectric Constant and Polarizability 405

    Electronic Polarizability 406

    Classical Theory of Electronic Polarizability 408

    Structural Phase Transitions 409

    Ferroelectric Crystals 409

    Classification of Ferroelectric Crystals 411

    Displacive Transitions 413

    Soft Optical Phonons 415

    Landau Theory of the Phase Transition 416

    Second-Order Transition 417

    First-Order Transition 419

    Antiferroelectricity 421

    Ferroelectric Domains 421

    Piezoelectricity 423

    Summary 424

    Problems 425

    Chapter 15: Plasmons, Polaritons, And Polarons 429

    Dielectric Function of the Electron Gas 431

    Definitions of the Dielectric Function 431

    Plasma Optics 432

    Dispersion Relation for Electromagnetic Waves 433

    Transverse Optical Modes in a Plasma 434

    Transparency of Metals in the Ultraviolet 434

    Longitudinal Plasma Oscillations 434

    Plasmons 437

    Electrostatic Screening 439

    Screened Coulomb Potential 442

    Pseudopotential Component U(0) 443

    Mott Metal-Insulator Transition 443

    Screening and Phonons in Metals 445

    Polaritons 446

    LST Relation 450

    Electron-Electron Interaction 453

    Fermi Liquid 453

    Electron-Electron Collisions 453

    Electron-Phonon Interaction:

    Polarons 456

    Peierls Instability of Linear

    Metals 458

    Summary 460

    Problems 460

    Chapter 16: Optical Processes And Excitons 465

    Optical Reflectance 467

    Kramers-Kronig Relations 468

    Mathematical Note 470

    Example: Conductivity of Collisionless Electron Gas 471

    Electronic Interband Transitions 472

    Excitons 473

    Frenkel Excitons 475

    Alkali Halides 478

    Molecular Crystals 478

    Weakly Bound (Mott-Wannier) Excitons 479

    Exciton Condensation into Electron-Hole Drops (EHD) 479

    Raman Effect in Crystals 482

    Electron Spectroscopy with X-Rays 485

    Energy Loss of Fast Particles in a Solid 486

    Summary 487

    Problems 488

    Chapter 17: Surface And Interface Physics 491

    Reconstruction and Relaxation 493

    Surface Crystallography 494

    Reflection High-Energy Electron Diffraction 497

    Surface Electronic Structure 498

    Work Function 498

    Thermionic Emission 499

    Surface States 499

    Tangential Surface Transport 501

    Magnetoresistance in a Two-Dimensional Channel 502

    Integral Quantized Hall Effect (IQHE) 503

    IQHE in Real Systems 504

    Fractional Quantized Hall Effect (FQHE) 507

    p-n Junctions 507

    Rectification 508

    Solar Cells and Photovoltaic Detectors 510

    Schottky Barrier 510

    Heterostructures 511

    n-N Heterojunction 512

    Semiconductor Lasers 514

    Light-Emitting Diodes 515

    Problems 517

    Chapter 18: Nanostructures 521

    Imaging Techniques for Nanostructures 525

    Electron Microscopy 526

    Optical Microscopy 527

    Scanning Tunneling Microscopy 529

    Atomic Force Microscopy 532

    Electronic Structure of 1D Systems 534

    One-dimensional (1D) Subbands 534

    Spectroscopy of Van Hove Singularities 535

    1D Metals—Coulomb Interactions and Lattice Couplings 537

    Electrical Transport in 1D 539

    Conductance Quantization and the Landauer Formula 539

    Two Barriers in Series-Resonant Tunneling 542

    Incoherent Addition and Ohm’s Law 544

    Localization 545

    Voltage Probes and the Büttiker-Landauer Formalism 546

    Electronic Structure of 0D Systems 551

    Quantized Energy Levels 551

    Semiconductor Nanocrystals 551

    Metallic Dots 553

    Discrete Charge States 555

    Electrical Transport in 0D 557

    Coulomb Oscillations 557

    Spin, Mott Insulators, and the Kondo Effect 560

    Cooper Pairing in Superconducting Dots 562

    Vibrational and Thermal Properties 563

    Quantized Vibrational Modes 563

    Transverse Vibrations 565

    Heat Capacity and Thermal Transport 567

    Summary 568

    Problems 568

    Chapter 19: Noncrystalline Solids 573

    Diffraction Pattern 575

    Monatomic Amorphous Materials 576

    Radial Distribution Function 577

    Structure of Vitreous Silica, SiO2 578

    Glasses 581

    Viscosity and the Hopping Rate 582

    Amorphous Ferromagnets 583

    Amorphous Semiconductors 585

    Low Energy Excitations in Amorphous Solids 586

    Heat Capacity Calculation 586

    Thermal Conductivity 587

    Fiber Optics 589

    Rayleigh Attenuation 590

    Problems 590

    Chapter 20: Point Defects 593

    Lattice Vacancies 595

    Diffusion 598

    Metals 601

    Color Centers 602

    F Centers 602

    Other Centers in Alkali Halides 603

    Problems 605

    Chapter 21: Dislocations 607

    Shear Strength of Single Crystals 609

    Slip 610

    Dislocations 611

    Burgers Vectors 614

    Stress Fields of Dislocations 615

    Low-angle Grain Boundaries 617

    Dislocation Densities 620

    Dislocation Multiplication and Slip 621

    Strength of Alloys 623

    Dislocations and Crystal Growth 625

    Whiskers 626

    Hardness of Materials 627

    Problems 628

    Chapter 22: Alloys 631

    General Considerations 633

    Substitutional Solid Solutions— Hume-Rothery Rules 636

    Order-Disorder Transformation 639

    Elementary Theory of Order 641

    Phase Diagrams 644

    Eutectics 644

    Transition Metal Alloys 646

    Electrical Conductivity 648

    Kondo Effect 649

    Problems 652

    Appendix A: Temperature Dependence Of The Reflection Lines 653

    Appendix B: Ewald Calculation Of Lattice Sums 656

    Ewald-Kornfeld Method for Lattice Sums for Dipole Arrays 659

    Appendix C: Quantization Of Elastic Waves: Phonons 660

    Phonon Coordinates 661

    Creation and Annihilation Operators 663

    Appendix D: Fermi-Dirac Distribution Function 664

    Appendix E: Derivation Of The Dk/Dt Equation 667

    Appendix F: Boltzmann Transport Equation 668

    Particle Diffusion 669

    Classical Distribution 670

    Fermi-Dirac Distribution 671

    Electrical Conductivity 673

    Appendix G: Vector Potential, Field Momentum, And Gauge Transformations 673

    Lagrangian Equations of Motion 674

    Derivation of the Hamiltonian 675

    Field Momentum 675

    Gauge Transformation 676

    Gauge in the London Equation 677

    Appendix H: Cooper Pairs 677

    Appendix I: Ginzburg-Landau Equation 679

    Appendix J: Electron-Phonon Collisions 683

    Index 687

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account