Description

Book Synopsis
1 Introduction to the Monograph.- 1.1 Background and Motivation: Transient Response Control.- 1.2 Organization of the Monograph.- 2 Iterative Learning Control: An Overview.- 2.1 Introduction.- 2.2 Literature Review.- 2.3 Problem Formulation.- 3 Linear Time-Invariant Learning Control.- 3.1 Convergence with Zero Error.- 3.2 Convergence with Non-Zero Error.- 3.3 The Nature of the Solution.- 4 LTI Learning Control via Parameter Estimation.- 4.1 System Description.- 4.2 Main Result.- 4.3 Comments.- 5 Finite-Horizon Learning Control.- 5.1 l?-Optimal Learning Control with Memory.- 5.2 Learning Convergence in One Step.- 5.3 Learning Control with Multirate Sampling.- 5.4 Examples.- 5.5 Comments and Extensions.- 6 Nonlinear Learning Control.- 6.1 Learning Control for Nonlinear Systems.- 6.2 Learning Controller for a Class of Nonlinear Systems.- 7 Artificial Neural Networks for Iterative Learning Control.- 7.1 Neural Network Controllers.- 7.2 Static Learning Controller Using an ANN.- 7.3 Dynamical Learning Controller Using an ANN.- 7.4 Reinforcement Learning Controller Using an ANN.- 8 Conclusion.- 8.1 Summary.- 8.2 Directions for Future Research.- Appendix A: Some Basic Results on Multirate Sampling.- A.1 Introduction.- A.3 Basic Result.- Appendix B: Tutorial on Artificial Neural Networks.- B.1 An Introduction to Neural Networks.- B.1.1 Neurons.- B.1.2 Interconnection Topology.- B.1.3 Learning Laws.- B.2 Historical Background.- B.3 Properties of Neural Networks.- B.3.1 Pattern Classification and Associative Memory.- B.3.2 Self-Organization and Feature Extraction.- B.3.3 Optimization.- B.3.4 Nonlinear Mappings.- B.4 Neural Nets and Computers.- B.5 Derivation of Backpropagation.- B.6 Neural Network References.- References.

Table of Contents
1 Introduction to the Monograph.- 1.1 Background and Motivation: Transient Response Control.- 1.2 Organization of the Monograph.- 2 Iterative Learning Control: An Overview.- 2.1 Introduction.- 2.2 Literature Review.- 2.3 Problem Formulation.- 3 Linear Time-Invariant Learning Control.- 3.1 Convergence with Zero Error.- 3.2 Convergence with Non-Zero Error.- 3.3 The Nature of the Solution.- 4 LTI Learning Control via Parameter Estimation.- 4.1 System Description.- 4.1.1 Notation.- 4.1.2 Parameter Estimator and Learning Control Law.- 4.2 Main Result.- 4.3 Comments.- 5 Finite-Horizon Learning Control.- 5.1 l?-Optimal Learning Control with Memory.- 5.2 Learning Convergence in One Step.- 5.3 Learning Control with Multirate Sampling.- 5.4 Examples.- 5.4.1 DC-Motor.- 5.4.2 Non-Minimum Phase System.- 5.5 Comments and Extensions.- 6 Nonlinear Learning Control.- 6.1 Learning Control for Nonlinear Systems.- 6.2 Learning Controller for a Class of Nonlinear Systems.- 6.2.1 Preliminaries.- 6.2.2 Adaptive Gain Adjustment.- 6.2.3 Simulation Experiment.- 7 Artificial Neural Networks for Iterative Learning Control.- 7.1 Neural Network Controllers.- 7.2 Static Learning Controller Using an ANN.- 7.3 Dynamical Learning Controller Using an ANN.- 7.4 Reinforcement Learning Controller Using an ANN.- 7.4.1 Reinforcement Learning.- 7.4.2 Proposed Learning Control System.- 7.4.3 Example and Comments.- 8 Conclusion.- 8.1 Summary.- 8.2 Directions for Future Research.- Appendix A: Some Basic Results on Multirate Sampling.- A.1 Introduction.- A.3 Basic Result.- Appendix B: Tutorial on Artificial Neural Networks.- B.1 An Introduction to Neural Networks.- B.1.1 Neurons.- B.1.2 Interconnection Topology.- B.1.3 Learning Laws.- B.2 Historical Background.- B.3 Properties of Neural Networks.- B.3.1 Pattern Classification and Associative Memory.- B.3.2 Self-Organization and Feature Extraction.- B.3.3 Optimization.- B.3.4 Nonlinear Mappings.- B.4 Neural Nets and Computers.- B.5 Derivation of Backpropagation.- B.6 Neural Network References.- References.

Iterative Learning Control for Deterministic Systems Advances in Industrial Control

Product form

£42.74

Includes FREE delivery

RRP £44.99 – you save £2.25 (5%)

Order before 4pm tomorrow for delivery by Sat 20 Dec 2025.

A Paperback by Kevin L. Moore

15 in stock


    View other formats and editions of Iterative Learning Control for Deterministic Systems Advances in Industrial Control by Kevin L. Moore

    Publisher: Springer London
    Publication Date: 12/12/2011 12:00:00 AM
    ISBN13: 9781447119142, 978-1447119142
    ISBN10: 1447119142

    Description

    Book Synopsis
    1 Introduction to the Monograph.- 1.1 Background and Motivation: Transient Response Control.- 1.2 Organization of the Monograph.- 2 Iterative Learning Control: An Overview.- 2.1 Introduction.- 2.2 Literature Review.- 2.3 Problem Formulation.- 3 Linear Time-Invariant Learning Control.- 3.1 Convergence with Zero Error.- 3.2 Convergence with Non-Zero Error.- 3.3 The Nature of the Solution.- 4 LTI Learning Control via Parameter Estimation.- 4.1 System Description.- 4.2 Main Result.- 4.3 Comments.- 5 Finite-Horizon Learning Control.- 5.1 l?-Optimal Learning Control with Memory.- 5.2 Learning Convergence in One Step.- 5.3 Learning Control with Multirate Sampling.- 5.4 Examples.- 5.5 Comments and Extensions.- 6 Nonlinear Learning Control.- 6.1 Learning Control for Nonlinear Systems.- 6.2 Learning Controller for a Class of Nonlinear Systems.- 7 Artificial Neural Networks for Iterative Learning Control.- 7.1 Neural Network Controllers.- 7.2 Static Learning Controller Using an ANN.- 7.3 Dynamical Learning Controller Using an ANN.- 7.4 Reinforcement Learning Controller Using an ANN.- 8 Conclusion.- 8.1 Summary.- 8.2 Directions for Future Research.- Appendix A: Some Basic Results on Multirate Sampling.- A.1 Introduction.- A.3 Basic Result.- Appendix B: Tutorial on Artificial Neural Networks.- B.1 An Introduction to Neural Networks.- B.1.1 Neurons.- B.1.2 Interconnection Topology.- B.1.3 Learning Laws.- B.2 Historical Background.- B.3 Properties of Neural Networks.- B.3.1 Pattern Classification and Associative Memory.- B.3.2 Self-Organization and Feature Extraction.- B.3.3 Optimization.- B.3.4 Nonlinear Mappings.- B.4 Neural Nets and Computers.- B.5 Derivation of Backpropagation.- B.6 Neural Network References.- References.

    Table of Contents
    1 Introduction to the Monograph.- 1.1 Background and Motivation: Transient Response Control.- 1.2 Organization of the Monograph.- 2 Iterative Learning Control: An Overview.- 2.1 Introduction.- 2.2 Literature Review.- 2.3 Problem Formulation.- 3 Linear Time-Invariant Learning Control.- 3.1 Convergence with Zero Error.- 3.2 Convergence with Non-Zero Error.- 3.3 The Nature of the Solution.- 4 LTI Learning Control via Parameter Estimation.- 4.1 System Description.- 4.1.1 Notation.- 4.1.2 Parameter Estimator and Learning Control Law.- 4.2 Main Result.- 4.3 Comments.- 5 Finite-Horizon Learning Control.- 5.1 l?-Optimal Learning Control with Memory.- 5.2 Learning Convergence in One Step.- 5.3 Learning Control with Multirate Sampling.- 5.4 Examples.- 5.4.1 DC-Motor.- 5.4.2 Non-Minimum Phase System.- 5.5 Comments and Extensions.- 6 Nonlinear Learning Control.- 6.1 Learning Control for Nonlinear Systems.- 6.2 Learning Controller for a Class of Nonlinear Systems.- 6.2.1 Preliminaries.- 6.2.2 Adaptive Gain Adjustment.- 6.2.3 Simulation Experiment.- 7 Artificial Neural Networks for Iterative Learning Control.- 7.1 Neural Network Controllers.- 7.2 Static Learning Controller Using an ANN.- 7.3 Dynamical Learning Controller Using an ANN.- 7.4 Reinforcement Learning Controller Using an ANN.- 7.4.1 Reinforcement Learning.- 7.4.2 Proposed Learning Control System.- 7.4.3 Example and Comments.- 8 Conclusion.- 8.1 Summary.- 8.2 Directions for Future Research.- Appendix A: Some Basic Results on Multirate Sampling.- A.1 Introduction.- A.3 Basic Result.- Appendix B: Tutorial on Artificial Neural Networks.- B.1 An Introduction to Neural Networks.- B.1.1 Neurons.- B.1.2 Interconnection Topology.- B.1.3 Learning Laws.- B.2 Historical Background.- B.3 Properties of Neural Networks.- B.3.1 Pattern Classification and Associative Memory.- B.3.2 Self-Organization and Feature Extraction.- B.3.3 Optimization.- B.3.4 Nonlinear Mappings.- B.4 Neural Nets and Computers.- B.5 Derivation of Backpropagation.- B.6 Neural Network References.- References.

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account