Description

Book Synopsis

Today, billions of devices are Internet-connected, IoT standards and protocols are stabilizing, and technical professionals must increasingly solve real problems with IoT technologies. Now, five leading Cisco IoT experts present the first comprehensive, practical reference for making IoT work. IoT Fundamentals brings together knowledge previously available only in white papers, standards documents, and other hard-to-find sources—or nowhere at all.

The authors begin with a high-level overview of IoT and introduce key concepts needed to successfully design IoT solutions. Next, they walk through each key technology, protocol, and technical building block that combine into complete IoT solutions.

Building on these essentials, they present several detailed use cases, including manufacturing, energy, utilities, smart+connected cities, transportation, mining, and public safety. Whatever your role or existing infrastructure, you’ll gain deep insight what IoT applications can do, and what it takes to deliver them.

  • Fully covers the principles and components of next-generation wireless networks built with Cisco IOT solutions such as IEEE 802.11 (Wi-Fi), IEEE 802.15.4-2015 (Mesh), and LoRaWAN
  • Brings together real-world tips, insights, and best practices for designing and implementing next-generation wireless networks
  • Presents start-to-finish configuration examples for common deployment scenarios
  • Reflects the extensive first-hand experience of Cisco experts


Table of Contents

Foreword xxvi
Introduction xxviii
Part I Introduction to IoT 1
Chapter 1 What Is IoT? 3
Genesis of IoT 4
IoT and Digitization 6
IoT Impact 7
Connected Roadways 8
Connected Factory 12
Smart Connected Buildings 15
Smart Creatures 19
Convergence of IT and OT 21
IoT Challenges 23
Summary 24
References 24
Chapter 2 IoT Network Architecture and Design 27
Drivers Behind New Network Architectures 28
Scale 30
Security 31
Constrained Devices and Networks 32
Data 32
Legacy Device Support 32
Comparing IoT Architectures 33
The oneM2M IoT Standardized Architecture 33
The IoT World Forum (IoTWF) Standardized Architecture 35
Additional IoT Reference Models 39
A Simplified IoT Architecture 40
The Core IoT Functional Stack 43
Layer 1: Things: Sensors and Actuators Layer 44
Layer 2: Communications Network Layer 46
Layer 3: Applications and Analytics Layer 59
IoT Data Management and Compute Stack 63
Fog Computing 65
Edge Computing 68
The Hierarchy of Edge, Fog, and Cloud 68
Summary 70
References 71
Part II Engineering IoT Networks 73
Chapter 3 Smart Objects: The “Things” in IoT 75
Sensors, Actuators, and Smart Objects 76
Sensors 76
Actuators 81
Micro-Electro-Mechanical Systems (MEMS) 83
Smart Objects 84
Sensor Networks 87
Wireless Sensor Networks (WSNs) 88
Communication Protocols for Wireless Sensor Networks 92
Summary 93
Chapter 4 Connecting Smart Objects 95
Communications Criteria 96
Range 96
Frequency Bands 98
Power Consumption 101
Topology 102
Constrained Devices 103
Constrained-Node Networks 104
IoT Access Technologies 107
IEEE 802.15.4 108
IEEE 802.15.4g and 802.15.4e 118
IEEE 1901.2a 124
IEEE 802.11ah 130
LoRaWAN 134
NB-IoT and Other LTE Variations 142
Summary 146
Chapter 5 IP as the IoT Network Layer 149
The Business Case for IP 150
The Key Advantages of Internet Protocol 150
Adoption or Adaptation of the Internet Protocol 152
The Need for Optimization 154
Constrained Nodes 155
Constrained Networks 156
IP Versions 157
Optimizing IP for IoT 159
From 6LoWPAN to 6Lo 159
Header Compression 161
Fragmentation 162
Mesh Addressing 163
6TiSCH 165
RPL 167
Authentication and Encryption on Constrained Nodes 173
Profiles and Compliances 174
Internet Protocol for Smart Objects (IPSO) Alliance 174
Wi-SUN Alliance 174
Thread 174
IPv6 Ready Logo 175
Summary 175
Chapter 6 Application Protocols for IoT 177
The Transport Layer 178
IoT Application Transport Methods 180
Application Layer Protocol Not Present 180
SCADA 182
Generic Web-Based Protocols 189
IoT Application Layer Protocols 191
Summary 204
Chapter 7 Data and Analytics for IoT 205
An Introduction to Data Analytics for IoT 206
Structured Versus Unstructured Data 207
Data in Motion Versus Data at Rest 209
IoT Data Analytics Overview 209
IoT Data Analytics Challenges 211
Machine Learning 212
Machine Learning Overview 212
Machine Learning and Getting Intelligence from Big Data 218
Predictive Analytics 220
Big Data Analytics Tools and Technology 220
Massively Parallel Processing Databases 222
NoSQL Databases 223
Hadoop 224
The Hadoop Ecosystem 227
Edge Streaming Analytics 230
Comparing Big Data and Edge Analytics 231
Edge Analytics Core Functions 232
Distributed Analytics Systems 235
Network Analytics 236
Flexible NetFlow Architecture 238
Summary 242
References 243
Chapter 8 Securing IoT 245
A Brief History of OT Security 246
Common Challenges in OT Security 249
Erosion of Network Architecture 249
Pervasive Legacy Systems 250
Insecure Operational Protocols 250
Other Protocols 253
Device Insecurity 254
Dependence on External Vendors 255
Security Knowledge 256
How IT and OT Security Practices and Systems Vary 256
The Purdue Model for Control Hierarchy 257
OT Network Characteristics Impacting Security 259
Security Priorities: Integrity, Availability, and Confidentiality 261
Security Focus 261
Formal Risk Analysis Structures: OCTAVE and FAIR 262
OCTAVE 262
FAIR 265
The Phased Application of Security in an Operational Environment 266
Secured Network Infrastructure and Assets 266
Deploying Dedicated Security Appliances 269
Higher-Order Policy Convergence and Network Monitoring 272
Summary 274
Part III IoT in Industry 275
Chapter 9 Manufacturing 277
An Introduction to Connected Manufacturing 278
An IoT Strategy for Connected Manufacturing 279
Business Improvements Driven Through IoT 281
An Architecture for the Connected Factory 282
Industrial Automation and Control Systems Reference Model 282
The CPwE Reference Model 284
CPwE Resilient Network Design 286
CPwE Wireless 289
Industrial Automation Control Protocols 293
EtherNet/IP and CIP 293
PROFINET 294
The PROFINET Architecture 296
Media Redundancy Protocol (MRP) 297
Modbus/TCP 298
Connected Factory Security 299
A Holistic Approach to Industrial Security 299
Edge Computing in the Connected Factory 304
Connected Machines and Edge Computing 304
Summary 307
References 307
Chapter 10 Oil and Gas 309
An Introduction to the Oil and Gas Industry 310
Defining Oil and Gas 310
The Oil and Gas Value Chain 313
Current Trends in the Oil and Gas Industry 314
Industry Key Challenges as Digitization Drivers 316
IoT and the Oil and Gas Industry 319
Improving Operational Efficiency 321
The Purdue Model for Control Hierarchy in Oil and Gas Networks 321
Oil and Gas Use Cases for IoT 323
IoT Architectures for Oil and Gas 326
Control Room Networks for Oil and Gas 327
Wired Networks for Oil and Gas 328
Wireless Networks for Oil and Gas 328
Wireless Use Cases in the Oil and Gas Industry 332
The Risk Control Framework for Cybersecurity in IoT 335
Securing the Oil and Gas PCN: Background 337
Securing the Oil and Gas PCN: Use Cases and Requirements 338
Data Analytics for Predictive Asset Monitoring 341
Summary 342
References 343
Chapter 11 Utilities 345
An Introduction to the Power Utility Industry 347
The IT/OT Divide in Utilities 348
The GridBlocks Reference Model 350
GridBlocks: An 11-Tiered Reference Architecture 352
The Primary Substation GridBlock and Substation Automation 356
SCADA 357
IEC 61850: The Modernization of Substation Communication
Standards 358
Network Resiliency Protocols in the Substation 362
System Control GridBlock: The Substation WAN 364
Defining Teleprotection 364
Designing a WAN for Teleprotection 367
The Field Area Network (FAN) GridBlock 369
Advanced Metering Infrastructure 371
Other Use Cases 373
Securing the Smart Grid 377
NERC CIP 378
Smart Grid Security Considerations 380
The Future of the Smart Grid 381
Summary 382
References 383
Chapter 12 Smart and Connected Cities 385
An IoT Strategy for Smarter Cities 386
Vertical IoT Needs for Smarter Cities 386
Global vs. Siloed Strategies 389
Smart City IoT Architecture 390
Street Layer 391
City Layer 394
Data Center Layer 395
Services Layer 397
On-Premises vs. Cloud 398
Smart City Security Architecture 398
Smart City Use-Case Examples 401
Connected Street Lighting 401
Connected Environment 409
Summary 411
References 412
Chapter 13 Transportation 413
Transportation and Transports 413
Transportation Challenges 415
Roadways 415
Mass Transit 416
Rail 417
Challenges for Transportation Operators and Users 418
IoT Use Cases for Transportation 420
Connected Cars 421
Connected Fleets 422
Infrastructure and Mass Transit 422
An IoT Architecture for Transportation 427
IoT Technologies for Roadways 427
Connected Roadways Network Architecture 434
Extending the Roadways IoT Architecture to Bus Mass Transit 440
Extending Bus IoT Architecture to Railways 442
Summary 447
References 448
Chapter 14 Mining 449
Mining Today and Its Challenges 451
Scale 451
Safety 455
Environment 455
Security 456
Volatile Markets 456
Challenges for IoT in Modern Mining 456
The OT Roles in Mining 456
Connectivity 457
An IoT Strategy for Mining 459
Improved Safety and Location Services 459
Location Services 461
Improved Efficiencies 464
Improved Collaboration 465
IoT Security for Mining 466
An Architecture for IoT in Mining 467
IEEE 802.11 as the IoT Access Layer 468
802.11 Outdoor Wireless Mesh 468
4G/LTE 474
Wireless in Underground Mining 475
Industrial Wireless 476
Isolated vs. Connected Mine Networks 476
Core Network Connectivity 478
Network Design Consideration for Mining Applications 479
Data Processing 480
Summary 481
Chapter 15 Public Safety 483
Overview of Public Safety 484
Public Safety Objects and Exchanges 484
Public and Private Partnership for Public Safety IoT 486
Public Safety Adoption of Technology and the IoT 488
An IoT Blueprint for Public Safety 489
Mission Continuum 489
Mission Fabric 490
Inter-agency Collaboration 491
Emergency Response IoT Architecture 493
Mobile Command Center 494
Mobile Vehicles: Land, Air, and Sea 501
IoT Public Safety Information Processing 506
School Bus Safety 508
Bus Location and Student Onboarding/Offboarding 508
Driver Behavior Reporting 510
Diagnostic Reporting 511
Video Surveillance 511
Student Wi-Fi 513
Push-to-Talk Communication 513
School Bus Safety Network Architecture 513
Summary 514
Reference 515
9781587144561, TOC, 5/16/2017

IoT Fundamentals: Networking Technologies,

Product form

£38.47

Includes FREE delivery

RRP £40.49 – you save £2.02 (4%)

Order before 4pm today for delivery by Fri 19 Dec 2025.

A Paperback / softback by David Hanes, Gonzalo Salgueiro, Patrick Grossetete

Out of stock


    View other formats and editions of IoT Fundamentals: Networking Technologies, by David Hanes

    Publisher: Pearson Education (US)
    Publication Date: 20/06/2017
    ISBN13: 9781587144561, 978-1587144561
    ISBN10: 1587144565

    Description

    Book Synopsis

    Today, billions of devices are Internet-connected, IoT standards and protocols are stabilizing, and technical professionals must increasingly solve real problems with IoT technologies. Now, five leading Cisco IoT experts present the first comprehensive, practical reference for making IoT work. IoT Fundamentals brings together knowledge previously available only in white papers, standards documents, and other hard-to-find sources—or nowhere at all.

    The authors begin with a high-level overview of IoT and introduce key concepts needed to successfully design IoT solutions. Next, they walk through each key technology, protocol, and technical building block that combine into complete IoT solutions.

    Building on these essentials, they present several detailed use cases, including manufacturing, energy, utilities, smart+connected cities, transportation, mining, and public safety. Whatever your role or existing infrastructure, you’ll gain deep insight what IoT applications can do, and what it takes to deliver them.

    • Fully covers the principles and components of next-generation wireless networks built with Cisco IOT solutions such as IEEE 802.11 (Wi-Fi), IEEE 802.15.4-2015 (Mesh), and LoRaWAN
    • Brings together real-world tips, insights, and best practices for designing and implementing next-generation wireless networks
    • Presents start-to-finish configuration examples for common deployment scenarios
    • Reflects the extensive first-hand experience of Cisco experts


    Table of Contents

    Foreword xxvi
    Introduction xxviii
    Part I Introduction to IoT 1
    Chapter 1 What Is IoT? 3
    Genesis of IoT 4
    IoT and Digitization 6
    IoT Impact 7
    Connected Roadways 8
    Connected Factory 12
    Smart Connected Buildings 15
    Smart Creatures 19
    Convergence of IT and OT 21
    IoT Challenges 23
    Summary 24
    References 24
    Chapter 2 IoT Network Architecture and Design 27
    Drivers Behind New Network Architectures 28
    Scale 30
    Security 31
    Constrained Devices and Networks 32
    Data 32
    Legacy Device Support 32
    Comparing IoT Architectures 33
    The oneM2M IoT Standardized Architecture 33
    The IoT World Forum (IoTWF) Standardized Architecture 35
    Additional IoT Reference Models 39
    A Simplified IoT Architecture 40
    The Core IoT Functional Stack 43
    Layer 1: Things: Sensors and Actuators Layer 44
    Layer 2: Communications Network Layer 46
    Layer 3: Applications and Analytics Layer 59
    IoT Data Management and Compute Stack 63
    Fog Computing 65
    Edge Computing 68
    The Hierarchy of Edge, Fog, and Cloud 68
    Summary 70
    References 71
    Part II Engineering IoT Networks 73
    Chapter 3 Smart Objects: The “Things” in IoT 75
    Sensors, Actuators, and Smart Objects 76
    Sensors 76
    Actuators 81
    Micro-Electro-Mechanical Systems (MEMS) 83
    Smart Objects 84
    Sensor Networks 87
    Wireless Sensor Networks (WSNs) 88
    Communication Protocols for Wireless Sensor Networks 92
    Summary 93
    Chapter 4 Connecting Smart Objects 95
    Communications Criteria 96
    Range 96
    Frequency Bands 98
    Power Consumption 101
    Topology 102
    Constrained Devices 103
    Constrained-Node Networks 104
    IoT Access Technologies 107
    IEEE 802.15.4 108
    IEEE 802.15.4g and 802.15.4e 118
    IEEE 1901.2a 124
    IEEE 802.11ah 130
    LoRaWAN 134
    NB-IoT and Other LTE Variations 142
    Summary 146
    Chapter 5 IP as the IoT Network Layer 149
    The Business Case for IP 150
    The Key Advantages of Internet Protocol 150
    Adoption or Adaptation of the Internet Protocol 152
    The Need for Optimization 154
    Constrained Nodes 155
    Constrained Networks 156
    IP Versions 157
    Optimizing IP for IoT 159
    From 6LoWPAN to 6Lo 159
    Header Compression 161
    Fragmentation 162
    Mesh Addressing 163
    6TiSCH 165
    RPL 167
    Authentication and Encryption on Constrained Nodes 173
    Profiles and Compliances 174
    Internet Protocol for Smart Objects (IPSO) Alliance 174
    Wi-SUN Alliance 174
    Thread 174
    IPv6 Ready Logo 175
    Summary 175
    Chapter 6 Application Protocols for IoT 177
    The Transport Layer 178
    IoT Application Transport Methods 180
    Application Layer Protocol Not Present 180
    SCADA 182
    Generic Web-Based Protocols 189
    IoT Application Layer Protocols 191
    Summary 204
    Chapter 7 Data and Analytics for IoT 205
    An Introduction to Data Analytics for IoT 206
    Structured Versus Unstructured Data 207
    Data in Motion Versus Data at Rest 209
    IoT Data Analytics Overview 209
    IoT Data Analytics Challenges 211
    Machine Learning 212
    Machine Learning Overview 212
    Machine Learning and Getting Intelligence from Big Data 218
    Predictive Analytics 220
    Big Data Analytics Tools and Technology 220
    Massively Parallel Processing Databases 222
    NoSQL Databases 223
    Hadoop 224
    The Hadoop Ecosystem 227
    Edge Streaming Analytics 230
    Comparing Big Data and Edge Analytics 231
    Edge Analytics Core Functions 232
    Distributed Analytics Systems 235
    Network Analytics 236
    Flexible NetFlow Architecture 238
    Summary 242
    References 243
    Chapter 8 Securing IoT 245
    A Brief History of OT Security 246
    Common Challenges in OT Security 249
    Erosion of Network Architecture 249
    Pervasive Legacy Systems 250
    Insecure Operational Protocols 250
    Other Protocols 253
    Device Insecurity 254
    Dependence on External Vendors 255
    Security Knowledge 256
    How IT and OT Security Practices and Systems Vary 256
    The Purdue Model for Control Hierarchy 257
    OT Network Characteristics Impacting Security 259
    Security Priorities: Integrity, Availability, and Confidentiality 261
    Security Focus 261
    Formal Risk Analysis Structures: OCTAVE and FAIR 262
    OCTAVE 262
    FAIR 265
    The Phased Application of Security in an Operational Environment 266
    Secured Network Infrastructure and Assets 266
    Deploying Dedicated Security Appliances 269
    Higher-Order Policy Convergence and Network Monitoring 272
    Summary 274
    Part III IoT in Industry 275
    Chapter 9 Manufacturing 277
    An Introduction to Connected Manufacturing 278
    An IoT Strategy for Connected Manufacturing 279
    Business Improvements Driven Through IoT 281
    An Architecture for the Connected Factory 282
    Industrial Automation and Control Systems Reference Model 282
    The CPwE Reference Model 284
    CPwE Resilient Network Design 286
    CPwE Wireless 289
    Industrial Automation Control Protocols 293
    EtherNet/IP and CIP 293
    PROFINET 294
    The PROFINET Architecture 296
    Media Redundancy Protocol (MRP) 297
    Modbus/TCP 298
    Connected Factory Security 299
    A Holistic Approach to Industrial Security 299
    Edge Computing in the Connected Factory 304
    Connected Machines and Edge Computing 304
    Summary 307
    References 307
    Chapter 10 Oil and Gas 309
    An Introduction to the Oil and Gas Industry 310
    Defining Oil and Gas 310
    The Oil and Gas Value Chain 313
    Current Trends in the Oil and Gas Industry 314
    Industry Key Challenges as Digitization Drivers 316
    IoT and the Oil and Gas Industry 319
    Improving Operational Efficiency 321
    The Purdue Model for Control Hierarchy in Oil and Gas Networks 321
    Oil and Gas Use Cases for IoT 323
    IoT Architectures for Oil and Gas 326
    Control Room Networks for Oil and Gas 327
    Wired Networks for Oil and Gas 328
    Wireless Networks for Oil and Gas 328
    Wireless Use Cases in the Oil and Gas Industry 332
    The Risk Control Framework for Cybersecurity in IoT 335
    Securing the Oil and Gas PCN: Background 337
    Securing the Oil and Gas PCN: Use Cases and Requirements 338
    Data Analytics for Predictive Asset Monitoring 341
    Summary 342
    References 343
    Chapter 11 Utilities 345
    An Introduction to the Power Utility Industry 347
    The IT/OT Divide in Utilities 348
    The GridBlocks Reference Model 350
    GridBlocks: An 11-Tiered Reference Architecture 352
    The Primary Substation GridBlock and Substation Automation 356
    SCADA 357
    IEC 61850: The Modernization of Substation Communication
    Standards 358
    Network Resiliency Protocols in the Substation 362
    System Control GridBlock: The Substation WAN 364
    Defining Teleprotection 364
    Designing a WAN for Teleprotection 367
    The Field Area Network (FAN) GridBlock 369
    Advanced Metering Infrastructure 371
    Other Use Cases 373
    Securing the Smart Grid 377
    NERC CIP 378
    Smart Grid Security Considerations 380
    The Future of the Smart Grid 381
    Summary 382
    References 383
    Chapter 12 Smart and Connected Cities 385
    An IoT Strategy for Smarter Cities 386
    Vertical IoT Needs for Smarter Cities 386
    Global vs. Siloed Strategies 389
    Smart City IoT Architecture 390
    Street Layer 391
    City Layer 394
    Data Center Layer 395
    Services Layer 397
    On-Premises vs. Cloud 398
    Smart City Security Architecture 398
    Smart City Use-Case Examples 401
    Connected Street Lighting 401
    Connected Environment 409
    Summary 411
    References 412
    Chapter 13 Transportation 413
    Transportation and Transports 413
    Transportation Challenges 415
    Roadways 415
    Mass Transit 416
    Rail 417
    Challenges for Transportation Operators and Users 418
    IoT Use Cases for Transportation 420
    Connected Cars 421
    Connected Fleets 422
    Infrastructure and Mass Transit 422
    An IoT Architecture for Transportation 427
    IoT Technologies for Roadways 427
    Connected Roadways Network Architecture 434
    Extending the Roadways IoT Architecture to Bus Mass Transit 440
    Extending Bus IoT Architecture to Railways 442
    Summary 447
    References 448
    Chapter 14 Mining 449
    Mining Today and Its Challenges 451
    Scale 451
    Safety 455
    Environment 455
    Security 456
    Volatile Markets 456
    Challenges for IoT in Modern Mining 456
    The OT Roles in Mining 456
    Connectivity 457
    An IoT Strategy for Mining 459
    Improved Safety and Location Services 459
    Location Services 461
    Improved Efficiencies 464
    Improved Collaboration 465
    IoT Security for Mining 466
    An Architecture for IoT in Mining 467
    IEEE 802.11 as the IoT Access Layer 468
    802.11 Outdoor Wireless Mesh 468
    4G/LTE 474
    Wireless in Underground Mining 475
    Industrial Wireless 476
    Isolated vs. Connected Mine Networks 476
    Core Network Connectivity 478
    Network Design Consideration for Mining Applications 479
    Data Processing 480
    Summary 481
    Chapter 15 Public Safety 483
    Overview of Public Safety 484
    Public Safety Objects and Exchanges 484
    Public and Private Partnership for Public Safety IoT 486
    Public Safety Adoption of Technology and the IoT 488
    An IoT Blueprint for Public Safety 489
    Mission Continuum 489
    Mission Fabric 490
    Inter-agency Collaboration 491
    Emergency Response IoT Architecture 493
    Mobile Command Center 494
    Mobile Vehicles: Land, Air, and Sea 501
    IoT Public Safety Information Processing 506
    School Bus Safety 508
    Bus Location and Student Onboarding/Offboarding 508
    Driver Behavior Reporting 510
    Diagnostic Reporting 511
    Video Surveillance 511
    Student Wi-Fi 513
    Push-to-Talk Communication 513
    School Bus Safety Network Architecture 513
    Summary 514
    Reference 515
    9781587144561, TOC, 5/16/2017

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account