Description

Book Synopsis
This book discusses unconstrained optimization with R—a free, open-source computing environment, which works on several platforms, including Windows, Linux, and macOS. The book highlights methods such as the steepest descent method, Newton method, conjugate direction method, conjugate gradient methods, quasi-Newton methods, rank one correction formula, DFP method, BFGS method and their algorithms, convergence analysis, and proofs. Each method is accompanied by worked examples and R scripts. To help readers apply these methods in real-world situations, the book features a set of exercises at the end of each chapter. Primarily intended for graduate students of applied mathematics, operations research and statistics, it is also useful for students of mathematics, engineering, management, economics, and agriculture.

Table of Contents
1. Introduction.- 2. Mathematical Foundations.- 3. Basics of R.- 4. First Order and Second Order Necessary Conditions.- 5. One Dimensional Optimization Methods.- 6. Steepest Descent Method.- 7. Newton’s Method.- 8. Conjugate Direction Methods.- 9. Quasi-Newton Methods.

Introduction to Unconstrained Optimization with R

Product form

£40.49

Includes FREE delivery

RRP £44.99 – you save £4.50 (10%)

Order before 4pm today for delivery by Fri 19 Dec 2025.

A Hardback by Shashi Kant Mishra, Bhagwat Ram

1 in stock


    View other formats and editions of Introduction to Unconstrained Optimization with R by Shashi Kant Mishra

    Publisher: Springer Verlag, Singapore
    Publication Date: 14/01/2020
    ISBN13: 9789811508936, 978-9811508936
    ISBN10: 9811508933

    Description

    Book Synopsis
    This book discusses unconstrained optimization with R—a free, open-source computing environment, which works on several platforms, including Windows, Linux, and macOS. The book highlights methods such as the steepest descent method, Newton method, conjugate direction method, conjugate gradient methods, quasi-Newton methods, rank one correction formula, DFP method, BFGS method and their algorithms, convergence analysis, and proofs. Each method is accompanied by worked examples and R scripts. To help readers apply these methods in real-world situations, the book features a set of exercises at the end of each chapter. Primarily intended for graduate students of applied mathematics, operations research and statistics, it is also useful for students of mathematics, engineering, management, economics, and agriculture.

    Table of Contents
    1. Introduction.- 2. Mathematical Foundations.- 3. Basics of R.- 4. First Order and Second Order Necessary Conditions.- 5. One Dimensional Optimization Methods.- 6. Steepest Descent Method.- 7. Newton’s Method.- 8. Conjugate Direction Methods.- 9. Quasi-Newton Methods.

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account