Description

Book Synopsis
This outstanding text by a foremost econometrician combines instruction in probability and statistics with econometrics in a rigorous but relatively nontechnical manner. Although its only mathematical requirement is multivariate calculus, it challenges the student to think deeply about basic concepts.

Trade Review
Introduction to Statistics and Econometrics covers probability and statistics, with emphasis on certain topics that are important in econometrics but often overlooked by statistics textbooks at this level… A thorough analysis of the problem of choosing estimators is given, including a comparison of various criteria for ranking estimators. The author also presents a critical evaluation of the classical method of hypothesis testing, especially in the realistic case of testing two composite hypothesis against each other. * Quarterly Journal of Applied Mathematics *

Table of Contents
Preface 1. Introduction 1.1 What Is Probability? 1.2 What Is Statistics? 2. Probability 2.1 Introduction 2.2 Axioms of Probability 2.3 Counting Techniques 2.4 Conditional Probability and Independence 2.5 Probability Calculations Exercises 3. Random Variables And Probability Distributions 3.1 Definitions of a Random Variable 3.2 Discrete Random Variables 3.3 Univariate Continuous Random Variables 3.4 Bivariate Continuous Random Variables 3.5 Distribution Function 3.6 Change of Variables 3.7 Joint Distribution of Discrete and Continuous Random Variables Exercises 4. Moments 4.1 Expected Value 4.2 Higher Moments 4.3 Covariance and Correlation 4.4 Conditional Mean and Variance Exercises 5. Binomial And Normal Random Variables 5.1 Binomial Random Variables 5.2 Normal Random Variables 5.3 Bivariate Normal Random Variables 5.4 Multivariate Normal Random Variables Exercises 6. Large Sample Theory 6.1 Modes of Convergence 6.2 Laws of Large Numbers and Central Limit Theorems 6.3 Normal Approximation of Binomial 6.4 Examples Exercises 7. Point Estimation 7.1 What Is an Estimator? 7.2 Properties of Estimators 7.3 Maximum Likelihood Estimator: Definition and Computation 7.4 Maximum Likelihood Estimator: Properties Exercises 8. Interval Estimation 8.1 Introduction 8.2 Confidence Intervals 8.3 Bayesian Method Exercises 9. Tests Of Hypotheses 9.1 Introduction 9.2 Type I and Type II Errors 9.3 Neyman-Pearson Lemma 9.4 Simple against Composite 9.5 Composite against Composite 9.6 Examples of Hypothesis Tests 9.7 Testing about a Vector Parameter Exercises 10. Bivariate Regression Model 10.1 Introduction 10.2 Least Squares Estimators 10.3 Tests of Hypotheses Exercises 11. Elements Of Matrix Analysis 11.1 Definition of Basic Terms 11.2 Matrix Operations 11.3 Determinants and Inverses 11.4 Simultaneous Linear Equations 11.5 Properties of the Symmetric Matrix Exercises 12. Multiple Regression Model 12.1 Introduction 12.2 Least Squares Estimators 12.3 Constrained Least Squares Estimators 12.4 Tests of Hypotheses 12.5 Selection of Regressors Exercises 13. Econometric Models 13.1

Introduction to Statistics and Econometrics

Product form

£68.76

Includes FREE delivery

RRP £85.95 – you save £17.19 (20%)

Order before 4pm tomorrow for delivery by Sat 27 Dec 2025.

A Hardback by Takeshi Amemiya

Out of stock


    View other formats and editions of Introduction to Statistics and Econometrics by Takeshi Amemiya

    Publisher: Harvard University Press
    Publication Date: 4/28/1994 12:00:00 AM
    ISBN13: 9780674462250, 978-0674462250
    ISBN10: 0674462254

    Description

    Book Synopsis
    This outstanding text by a foremost econometrician combines instruction in probability and statistics with econometrics in a rigorous but relatively nontechnical manner. Although its only mathematical requirement is multivariate calculus, it challenges the student to think deeply about basic concepts.

    Trade Review
    Introduction to Statistics and Econometrics covers probability and statistics, with emphasis on certain topics that are important in econometrics but often overlooked by statistics textbooks at this level… A thorough analysis of the problem of choosing estimators is given, including a comparison of various criteria for ranking estimators. The author also presents a critical evaluation of the classical method of hypothesis testing, especially in the realistic case of testing two composite hypothesis against each other. * Quarterly Journal of Applied Mathematics *

    Table of Contents
    Preface 1. Introduction 1.1 What Is Probability? 1.2 What Is Statistics? 2. Probability 2.1 Introduction 2.2 Axioms of Probability 2.3 Counting Techniques 2.4 Conditional Probability and Independence 2.5 Probability Calculations Exercises 3. Random Variables And Probability Distributions 3.1 Definitions of a Random Variable 3.2 Discrete Random Variables 3.3 Univariate Continuous Random Variables 3.4 Bivariate Continuous Random Variables 3.5 Distribution Function 3.6 Change of Variables 3.7 Joint Distribution of Discrete and Continuous Random Variables Exercises 4. Moments 4.1 Expected Value 4.2 Higher Moments 4.3 Covariance and Correlation 4.4 Conditional Mean and Variance Exercises 5. Binomial And Normal Random Variables 5.1 Binomial Random Variables 5.2 Normal Random Variables 5.3 Bivariate Normal Random Variables 5.4 Multivariate Normal Random Variables Exercises 6. Large Sample Theory 6.1 Modes of Convergence 6.2 Laws of Large Numbers and Central Limit Theorems 6.3 Normal Approximation of Binomial 6.4 Examples Exercises 7. Point Estimation 7.1 What Is an Estimator? 7.2 Properties of Estimators 7.3 Maximum Likelihood Estimator: Definition and Computation 7.4 Maximum Likelihood Estimator: Properties Exercises 8. Interval Estimation 8.1 Introduction 8.2 Confidence Intervals 8.3 Bayesian Method Exercises 9. Tests Of Hypotheses 9.1 Introduction 9.2 Type I and Type II Errors 9.3 Neyman-Pearson Lemma 9.4 Simple against Composite 9.5 Composite against Composite 9.6 Examples of Hypothesis Tests 9.7 Testing about a Vector Parameter Exercises 10. Bivariate Regression Model 10.1 Introduction 10.2 Least Squares Estimators 10.3 Tests of Hypotheses Exercises 11. Elements Of Matrix Analysis 11.1 Definition of Basic Terms 11.2 Matrix Operations 11.3 Determinants and Inverses 11.4 Simultaneous Linear Equations 11.5 Properties of the Symmetric Matrix Exercises 12. Multiple Regression Model 12.1 Introduction 12.2 Least Squares Estimators 12.3 Constrained Least Squares Estimators 12.4 Tests of Hypotheses 12.5 Selection of Regressors Exercises 13. Econometric Models 13.1

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account