Description

Book Synopsis
An introduction to the theory of operator spaces, emphasising examples that illustrate the theory and applications to C*-algebras, and applications to non self-adjoint operator algebras, and similarity problems. Postgraduate and professional mathematicians interested in functional analysis, operator algebras and theoretical physics will find the book has much to offer.

Trade Review
'The tone of the book is quite informal, friendly and inviting. Even to experts in the field, a large proportion of the results, and certainly of the proofs, will be new and stimulating. … there are literally thousands of wonderful results and insights in the text which the reader will not find elsewhere. The book covers an incredible amount of ground, and makes use of some of the most exciting recent work in modern analysis. … It is a magnificent book: an enormous treasure trove, and a work of love and care by one of the great analysts of our time. All students and researchers in functional analysis should have a copy. Anybody planning to work in operator space theory will need to be thoroughly immersed in it.' Proceedings of the Edinburgh Mathematical Society

Table of Contents
Part I. Introduction to Operator Spaces: 1. Completely bounded maps; 2. Minimal tensor product; 3. Minimal and maximal operator space structures on a Banach space; 4. Projective tensor product; 5. The Haagerup tensor product; 6. Characterizations of operator algebras; 7. The operator Hilbert space; 8. Group C*-algebras; 9. Examples and comments; 10. Comparisons; Part II. Operator Spaces and C*-tensor products: 11. C*-norms on tensor products; 12. Nuclearity and approximation properties; 13. C*; 14. Kirchberg's theorem on decomposable maps; 15. The weak expectation property; 16. The local lifting property; 17. Exactness; 18. Local reflexivity; 19. Grothendieck's theorem for operator spaces; 20. Estimating the norms of sums of unitaries; 21. Local theory of operator spaces; 22. B(H) * B(H); 23. Completely isomorphic C*-algebras; 24. Injective and projective operator spaces; Part III. Operator Spaces and Non Self-Adjoint Operator Algebras: 25. Maximal tensor products and free products of non self-adjoint operator algebras; 26. The Blechter-Paulsen factorization; 27. Similarity problems; 28. The Sz-nagy-halmos similarity problem; Solutions to the exercises; References.

Introduction to Operator Space Theory

Product form

£101.82

Includes FREE delivery

Order before 4pm tomorrow for delivery by Mon 19 Jan 2026.

A Paperback by Gilles Pisier

15 in stock


    View other formats and editions of Introduction to Operator Space Theory by Gilles Pisier

    Publisher: Cambridge University Press
    Publication Date: 8/25/2003 12:00:00 AM
    ISBN13: 9780521811651, 978-0521811651
    ISBN10: 0521811651

    Description

    Book Synopsis
    An introduction to the theory of operator spaces, emphasising examples that illustrate the theory and applications to C*-algebras, and applications to non self-adjoint operator algebras, and similarity problems. Postgraduate and professional mathematicians interested in functional analysis, operator algebras and theoretical physics will find the book has much to offer.

    Trade Review
    'The tone of the book is quite informal, friendly and inviting. Even to experts in the field, a large proportion of the results, and certainly of the proofs, will be new and stimulating. … there are literally thousands of wonderful results and insights in the text which the reader will not find elsewhere. The book covers an incredible amount of ground, and makes use of some of the most exciting recent work in modern analysis. … It is a magnificent book: an enormous treasure trove, and a work of love and care by one of the great analysts of our time. All students and researchers in functional analysis should have a copy. Anybody planning to work in operator space theory will need to be thoroughly immersed in it.' Proceedings of the Edinburgh Mathematical Society

    Table of Contents
    Part I. Introduction to Operator Spaces: 1. Completely bounded maps; 2. Minimal tensor product; 3. Minimal and maximal operator space structures on a Banach space; 4. Projective tensor product; 5. The Haagerup tensor product; 6. Characterizations of operator algebras; 7. The operator Hilbert space; 8. Group C*-algebras; 9. Examples and comments; 10. Comparisons; Part II. Operator Spaces and C*-tensor products: 11. C*-norms on tensor products; 12. Nuclearity and approximation properties; 13. C*; 14. Kirchberg's theorem on decomposable maps; 15. The weak expectation property; 16. The local lifting property; 17. Exactness; 18. Local reflexivity; 19. Grothendieck's theorem for operator spaces; 20. Estimating the norms of sums of unitaries; 21. Local theory of operator spaces; 22. B(H) * B(H); 23. Completely isomorphic C*-algebras; 24. Injective and projective operator spaces; Part III. Operator Spaces and Non Self-Adjoint Operator Algebras: 25. Maximal tensor products and free products of non self-adjoint operator algebras; 26. The Blechter-Paulsen factorization; 27. Similarity problems; 28. The Sz-nagy-halmos similarity problem; Solutions to the exercises; References.

    Recently viewed products

    © 2026 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account